Spaces:
Sleeping
Sleeping
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import torch | |
import nvdiffrast.torch as dr | |
from . import util | |
from . import mesh | |
###################################################################################### | |
# Computes the image gradient, useful for kd/ks smoothness losses | |
###################################################################################### | |
def image_grad(buf, std=0.01): | |
t, s = torch.meshgrid(torch.linspace(-1.0 + 1.0 / buf.shape[1], 1.0 - 1.0 / buf.shape[1], buf.shape[1], device="cuda"), | |
torch.linspace(-1.0 + 1.0 / buf.shape[2], 1.0 - 1.0 / buf.shape[2], buf.shape[2], device="cuda"), | |
indexing='ij') | |
tc = torch.normal(mean=0, std=std, size=(buf.shape[0], buf.shape[1], buf.shape[2], 2), device="cuda") + torch.stack((s, t), dim=-1)[None, ...] | |
tap = dr.texture(buf, tc, filter_mode='linear', boundary_mode='clamp') | |
return torch.abs(tap[..., :-1] - buf[..., :-1]) * tap[..., -1:] * buf[..., -1:] | |
###################################################################################### | |
# Computes the avergage edge length of a mesh. | |
# Rough estimate of the tessellation of a mesh. Can be used e.g. to clamp gradients | |
###################################################################################### | |
def avg_edge_length(v_pos, t_pos_idx): | |
e_pos_idx = mesh.compute_edges(t_pos_idx) | |
edge_len = util.length(v_pos[:, e_pos_idx[:, 0]] - v_pos[:, e_pos_idx[:, 1]]) | |
return torch.mean(edge_len) | |
###################################################################################### | |
# Laplacian regularization using umbrella operator (Fujiwara / Desbrun). | |
# https://mgarland.org/class/geom04/material/smoothing.pdf | |
###################################################################################### | |
def laplace_regularizer_const(v_pos, t_pos_idx): | |
batch_size = v_pos.shape[0] | |
term = torch.zeros_like(v_pos) | |
norm = torch.zeros_like(v_pos[..., 0:1]) | |
v0 = v_pos[:, t_pos_idx[0, :, 0], :] | |
v1 = v_pos[:, t_pos_idx[0, :, 1], :] | |
v2 = v_pos[:, t_pos_idx[0, :, 2], :] | |
term.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 3), (v1 - v0) + (v2 - v0)) | |
term.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 3), (v0 - v1) + (v2 - v1)) | |
term.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 3), (v0 - v2) + (v1 - v2)) | |
two = torch.ones_like(v0) * 2.0 | |
# norm.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 3), two) | |
# norm.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 3), two) | |
# norm.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 3), two) | |
norm.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 1), two) | |
norm.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 1), two) | |
norm.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 1), two) | |
term = term / torch.clamp(norm, min=1.0) | |
return torch.mean(term ** 2) | |
###################################################################################### | |
# Smooth vertex normals | |
###################################################################################### | |
def normal_consistency(v_pos, t_pos_idx): | |
# Compute face normals | |
v0 = v_pos[:, t_pos_idx[0, :, 0]] | |
v1 = v_pos[:, t_pos_idx[0, :, 1]] | |
v2 = v_pos[:, t_pos_idx[0, :, 2]] | |
face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0, dim=-1)) | |
tris_per_edge = mesh.compute_edge_to_face_mapping(t_pos_idx) | |
# Fetch normals for both faces sharing an edge | |
n0 = face_normals[:, tris_per_edge[:, 0], :] | |
n1 = face_normals[:, tris_per_edge[:, 1], :] | |
# Compute error metric based on normal difference | |
term = torch.clamp(util.dot(n0, n1), min=-1.0, max=1.0) | |
term = (1.0 - term) * 0.5 | |
return torch.mean(torch.abs(term)) | |
def get_edge_length(v_pos, t_pos_idx): | |
e_pos_idx = mesh.compute_edges(t_pos_idx) | |
edge_len = util.length(v_pos[:, e_pos_idx[:, 0]] - v_pos[:, e_pos_idx[:, 1]]) | |
return edge_len | |