Spaces:
Sleeping
Sleeping
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import nvdiffrast.torch as dr | |
from . import util | |
from . import renderutils as ru | |
from ..networks import MLP | |
###################################################################################### | |
# Utility functions | |
###################################################################################### | |
class cubemap_mip(torch.autograd.Function): | |
def forward(ctx, cubemap): | |
return util.avg_pool_nhwc(cubemap, (2,2)) | |
def backward(ctx, dout): | |
res = dout.shape[1] * 2 | |
out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda") | |
for s in range(6): | |
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), | |
torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), | |
indexing='ij') | |
v = util.safe_normalize(util.cube_to_dir(s, gx, gy)) | |
out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') | |
return out | |
###################################################################################### | |
# Split-sum environment map light source with automatic mipmap generation | |
###################################################################################### | |
class EnvironmentLight(torch.nn.Module): | |
LIGHT_MIN_RES = 16 | |
MIN_ROUGHNESS = 0.08 | |
MAX_ROUGHNESS = 0.5 | |
def __init__(self, base): | |
super(EnvironmentLight, self).__init__() | |
self.mtx = None | |
self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True) | |
self.register_parameter('env_base', self.base) | |
def xfm(self, mtx): | |
self.mtx = mtx | |
def clone(self): | |
return EnvironmentLight(self.base.clone().detach()) | |
def clamp_(self, min=None, max=None): | |
self.base.clamp_(min, max) | |
def get_mip(self, roughness): | |
return torch.where(roughness < self.MAX_ROUGHNESS | |
, (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2) | |
, (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2) | |
def build_mips(self, cutoff=0.99): | |
self.specular = [self.base] | |
while self.specular[-1].shape[1] > self.LIGHT_MIN_RES: | |
self.specular += [cubemap_mip.apply(self.specular[-1])] | |
self.diffuse = ru.diffuse_cubemap(self.specular[-1]) | |
for idx in range(len(self.specular) - 1): | |
roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS | |
self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff) | |
self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff) | |
def regularizer(self): | |
white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0 | |
return torch.mean(torch.abs(self.base - white)) | |
def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True): | |
wo = util.safe_normalize(view_pos - gb_pos) | |
if specular: | |
roughness = ks[..., 1:2] # y component | |
metallic = ks[..., 2:3] # z component | |
spec_col = (1.0 - metallic)*0.04 + kd * metallic | |
diff_col = kd * (1.0 - metallic) | |
else: | |
diff_col = kd | |
reflvec = util.safe_normalize(util.reflect(wo, gb_normal)) | |
nrmvec = gb_normal | |
if self.mtx is not None: # Rotate lookup | |
mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda') | |
reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape) | |
nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape) | |
# Diffuse lookup | |
diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube') | |
shaded_col = diffuse * diff_col | |
if specular: | |
# Lookup FG term from lookup texture | |
NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4) | |
fg_uv = torch.cat((NdotV, roughness), dim=-1) | |
if not hasattr(self, '_FG_LUT'): | |
self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') | |
fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp') | |
# Roughness adjusted specular env lookup | |
miplevel = self.get_mip(roughness) | |
spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') | |
# Compute aggregate lighting | |
reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2] | |
shaded_col += spec * reflectance | |
return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility | |
###################################################################################### | |
# Load and store | |
###################################################################################### | |
# Load from latlong .HDR file | |
def _load_env_hdr(fn, scale=1.0): | |
latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale | |
cubemap = util.latlong_to_cubemap(latlong_img, [512, 512]) | |
l = EnvironmentLight(cubemap) | |
l.build_mips() | |
return l | |
def load_env(fn, scale=1.0): | |
if os.path.splitext(fn)[1].lower() == ".hdr": | |
return _load_env_hdr(fn, scale) | |
else: | |
assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1] | |
def save_env_map(fn, light): | |
assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently" | |
if isinstance(light, EnvironmentLight): | |
color = util.cubemap_to_latlong(light.base, [512, 1024]) | |
util.save_image_raw(fn, color.detach().cpu().numpy()) | |
###################################################################################### | |
# Create trainable env map with random initialization | |
###################################################################################### | |
def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25): | |
base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias | |
return EnvironmentLight(base) | |
###################################################################################### | |
# Directional light source | |
###################################################################################### | |
class DirectionalLight(torch.nn.Module): | |
def __init__(self, mlp_in, mlp_layers, mlp_hidden_size, intensity_min_max=None): | |
super(DirectionalLight, self).__init__() | |
self.mlp = MLP(mlp_in, 4, mlp_layers, nf=mlp_hidden_size, activation='sigmoid') | |
if intensity_min_max is not None: | |
self.register_buffer('intensity_min_max', intensity_min_max) | |
else: | |
self.intensity_min_max = None | |
def forward(self, feat): | |
# print('----------------- forward light !!! -----------------') | |
out = self.mlp(feat) | |
light_dir = F.normalize(torch.cat([out[..., 0:1] *2-1, torch.ones_like(out[..., :1]) * 0.5, out[..., 1:2] *2-1], dim=-1), dim=-1) # upper hemisphere | |
if self.intensity_min_max is not None: | |
int = out[..., 2:] * (self.intensity_min_max[1][None, :] - self.intensity_min_max[0][None, :]) + self.intensity_min_max[0][None, :] | |
self.light_params = torch.cat([light_dir, int], -1) | |
return self.light_params | |
def shade(self, feat, kd, normal): | |
light_params = self.forward(feat) | |
light_dir = light_params[..., :3][:, None, None, :] | |
int_amb = light_params[..., 3:4][:, None, None, :] | |
int_diff = light_params[..., 4:5][:, None, None, :] | |
shading = (int_amb + int_diff * torch.clamp(util.dot(light_dir, normal), min=0.0)) | |
shaded = shading * kd | |
return shaded, shading | |