3DFauna_demo / video3d /render /mlptexture.py
kyleleey
first commit
98a77e0
raw
history blame
5.42 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import tinycudann as tcnn
import numpy as np
#######################################################################################################################################################
# Small MLP using PyTorch primitives, internal helper class
#######################################################################################################################################################
class _MLP(torch.nn.Module):
def __init__(self, cfg, loss_scale=1.0):
super(_MLP, self).__init__()
self.loss_scale = loss_scale
net = (torch.nn.Linear(cfg['n_input_dims'], cfg['n_neurons'], bias=False), torch.nn.ReLU())
for i in range(cfg['n_hidden_layers']-1):
net = net + (torch.nn.Linear(cfg['n_neurons'], cfg['n_neurons'], bias=False), torch.nn.ReLU())
net = net + (torch.nn.Linear(cfg['n_neurons'], cfg['n_output_dims'], bias=False),)
self.net = torch.nn.Sequential(*net).cuda()
self.net.apply(self._init_weights)
if self.loss_scale != 1.0:
self.net.register_full_backward_hook(lambda module, grad_i, grad_o: (grad_i[0] * self.loss_scale, ))
def forward(self, x):
return self.net(x.to(torch.float32))
@staticmethod
def _init_weights(m):
if type(m) == torch.nn.Linear:
torch.nn.init.kaiming_uniform_(m.weight, nonlinearity='relu')
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
#######################################################################################################################################################
# Outward visible MLP class
#######################################################################################################################################################
class MLPTexture3D(torch.nn.Module):
def __init__(self, AABB, channels=3, internal_dims=32, hidden=2, feat_dim=0, min_max=None, bsdf='diffuse', perturb_normal=False, symmetrize=False):
super(MLPTexture3D, self).__init__()
self.channels = channels
self.feat_dim = feat_dim
self.internal_dims = internal_dims
self.AABB = AABB
self.bsdf = bsdf
self.perturb_normal = perturb_normal
self.symmetrize = symmetrize
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
# Setup positional encoding, see https://github.com/NVlabs/tiny-cuda-nn for details.
desired_resolution = 4096
base_grid_resolution = 16
num_levels = 16
per_level_scale = np.exp(np.log(desired_resolution / base_grid_resolution) / (num_levels-1))
enc_cfg = {
"otype": "HashGrid",
"n_levels": num_levels,
"n_features_per_level": 2,
"log2_hashmap_size": 19,
"base_resolution": base_grid_resolution,
"per_level_scale" : per_level_scale
}
# gradient_scaling = 128.0
gradient_scaling = 1.0
self.encoder = tcnn.Encoding(3, enc_cfg)
self.encoder.register_full_backward_hook(lambda module, grad_i, grad_o: (grad_i[0] / gradient_scaling, ))
# Setup MLP
mlp_cfg = {
"n_input_dims" : internal_dims + feat_dim,
"n_output_dims" : self.channels,
"n_hidden_layers" : hidden,
"n_neurons" : self.internal_dims
}
self.linear = torch.nn.Linear(self.encoder.n_output_dims, internal_dims)
self.net = _MLP(mlp_cfg, gradient_scaling)
self.relu = torch.nn.ReLU(inplace=True)
print("Encoder output: %d dims" % (self.encoder.n_output_dims))
# Sample texture at a given location
def sample(self, texc, feat=None):
assert (feat is None and self.feat_dim == 0) or feat.shape[-1] == self.feat_dim
if self.symmetrize:
xs, ys, zs = texc.unbind(-1)
texc = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
_texc = (texc.view(-1, 3) - self.AABB[0][None, ...]) / (self.AABB[1][None, ...] - self.AABB[0][None, ...])
_texc = torch.clamp(_texc, min=0, max=1)
_, image_h, image_w, _ = texc.shape
p_enc = self.encoder(_texc.contiguous())
x_in = self.linear(p_enc.type(texc.dtype))
if feat is not None:
feat_in = feat[:, None, None, :].repeat(1, image_h, image_w, 1).view(-1, self.feat_dim)
x_in = torch.concat([x_in, feat_in], dim=-1)
out = self.net(self.relu(x_in))
# Sigmoid limit and scale to the allowed range
out = torch.sigmoid(out)
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(*texc.shape[:-1], self.channels) # Remap to [n, h, w, c]
def cleanup(self):
tcnn.free_temporary_memory()