3DFauna_demo / video3d /triplane_texture /triplane_predictor.py
kyleleey
first commit
98a77e0
raw
history blame
31.5 kB
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from video3d.triplane_texture.ops import bias_act
from video3d.triplane_texture.ops import fma
from video3d.triplane_texture.ops import upfirdn2d
from video3d.triplane_texture.ops import conv2d_resample
from video3d.triplane_texture.ops import grid_sample_gradfix
from video3d.triplane_texture import misc
def modulated_conv2d(
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
styles, # Modulation coefficients of shape [batch_size, in_channels].
noise=None, # Optional noise tensor to add to the output activations.
up=1, # Integer upsampling factor.
down=1, # Integer downsampling factor.
padding=0, # Padding with respect to the upsampled image.
resample_filter=None,
# Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
demodulate=True, # Apply weight demodulation?
flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation?
):
batch_size = x.shape[0]
out_channels, in_channels, kh, kw = weight.shape
misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
misc.assert_shape(styles, [batch_size, in_channels]) # [NI]
# Pre-normalize inputs to avoid FP16 overflow.
if x.dtype == torch.float16 and demodulate:
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(
float('inf'), dim=[1, 2, 3], keepdim=True)) # max_Ikk
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
# Calculate per-sample weights and demodulation coefficients.
w = None
dcoefs = None
if demodulate or fused_modconv:
w = weight.unsqueeze(0) # [NOIkk]
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
if demodulate:
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO]
if demodulate and fused_modconv:
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
# Execute by scaling the activations before and after the convolution.
if not fused_modconv:
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
x = conv2d_resample.conv2d_resample(
x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
if demodulate and noise is not None:
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
elif demodulate:
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
elif noise is not None:
x = x.add_(noise.to(x.dtype))
return x
# Execute as one fused op using grouped convolution.
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(batch_size)
misc.assert_shape(x, [batch_size, in_channels, None, None])
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, in_channels, kh, kw)
x = conv2d_resample.conv2d_resample(
x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size,
flip_weight=flip_weight)
x = x.reshape(batch_size, -1, *x.shape[2:])
if noise is not None:
x = x.add_(noise)
return x
def modulated_fc(
x, # Input tensor of shape [batch_size, n_feature, in_channels].
weight, # Weight tensor of shape [out_channels, in_channels].
styles, # Modulation coefficients of shape [batch_size, in_channels].
noise=None, # Optional noise tensor to add to the output activations.
demodulate=True, # Apply weight demodulation?
):
batch_size = x.shape[0]
n_feature = x.shape[1]
out_channels, in_channels = weight.shape
misc.assert_shape(weight, [out_channels, in_channels])
misc.assert_shape(x, [batch_size, n_feature, in_channels])
misc.assert_shape(styles, [batch_size, in_channels])
assert demodulate
# Pre-normalize inputs to avoid FP16 overflow.
if x.dtype == torch.float16 and demodulate:
weight = weight * (1 / np.sqrt(in_channels) / weight.norm(float('inf'), dim=[1, 2, 3], keepdim=True)) # max_Ikk
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
# Calculate per-sample weights and demodulation coefficients.
w = weight.unsqueeze(0) # [NOI]
w = w * styles.unsqueeze(dim=1) # [NOI]
dcoefs = (w.square().sum(dim=[2]) + 1e-8).rsqrt() # [NO]
w = w * dcoefs.unsqueeze(dim=-1) # [NOI]
x = torch.bmm(x, w.permute(0, 2, 1))
if noise is not None:
x = x.add_(noise)
return x
class FullyConnectedLayer(torch.nn.Module):
def __init__(
self,
in_features, # Number of input features.
out_features, # Number of output features.
bias=True, # Apply additive bias before the activation function?
activation='linear', # Activation function: 'relu', 'lrelu', etc.
device='cuda',
lr_multiplier=1, # Learning rate multiplier.
bias_init=0, # Initial value for the additive bias.
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features], device=device) / lr_multiplier)
self.bias = torch.nn.Parameter(
torch.full([out_features], np.float32(bias_init), device=device)) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight.to(x.dtype) * self.weight_gain
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
def extra_repr(self):
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
class SynthesisLayer(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this layer.
kernel_size=3, # Convolution kernel size.
up=1, # Integer upsampling factor.
use_noise=True, # Enable noise input?
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
device='cuda',
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
channels_last=False, # Use channels_last format for the weights?
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.resolution = resolution
self.up = up
self.use_noise = use_noise
self.activation = activation
self.conv_clamp = conv_clamp
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = kernel_size // 2
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device)
memory_format = torch.channels_last if channels_last else torch.contiguous_format
self.weight = torch.nn.Parameter(
torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to(
memory_format=memory_format))
if use_noise:
self.register_buffer('noise_const', torch.randn([resolution, resolution], device=device))
self.noise_strength = torch.nn.Parameter(torch.zeros([], device=device))
self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device))
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1):
assert noise_mode in ['random', 'const', 'none']
in_resolution = self.resolution // self.up
misc.assert_shape(x, [None, self.in_channels, in_resolution, in_resolution])
styles = self.affine(w)
noise = None
if self.use_noise and noise_mode == 'random':
noise = torch.randn(
[x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength
if self.use_noise and noise_mode == 'const':
noise = self.noise_const * self.noise_strength
flip_weight = (self.up == 1) # slightly faster
x = modulated_conv2d(
x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight,
fused_modconv=fused_modconv)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
return x
def extra_repr(self):
return ' '.join(
[
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},',
f'resolution={self.resolution:d}, up={self.up}, activation={self.activation:s}'])
class ImplicitSynthesisLayer(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
use_noise=True, # Enable noise input?
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
device='cuda',
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.use_noise = use_noise
self.activation = activation
self.conv_clamp = conv_clamp
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device)
self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels], device=device))
self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device))
def forward(self, w, x, noise_mode='random', gain=1):
# x is the feature#############
# w is the condition
assert noise_mode in ['random', 'const', 'none']
styles = self.affine(w)
noise = None # in te beegining, we didn't use the noise
x = modulated_fc(x=x, weight=self.weight, styles=styles, noise=noise)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(
x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp,
dim=2) # the last dim is the feature dim
return x
def extra_repr(self):
return ' '.join(
[
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},',
f'activation={self.activation:s}'])
class Conv2dLayer(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
device='cuda',
bias=True, # Apply additive bias before the activation function?
activation='linear', # Activation function: 'relu', 'lrelu', etc.
up=1, # Integer upsampling factor.
down=1, # Integer downsampling factor.
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
channels_last=False, # Expect the input to have memory_format=channels_last?
trainable=True, # Update the weights of this layer during training?
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.activation = activation
self.up = up
self.down = down
self.conv_clamp = conv_clamp
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.act_gain = bias_act.activation_funcs[activation].def_gain
memory_format = torch.channels_last if channels_last else torch.contiguous_format
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to(
memory_format=memory_format)
bias = torch.zeros([out_channels], device=device) if bias else None
if trainable:
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias) if bias is not None else None
else:
self.register_buffer('weight', weight)
if bias is not None:
self.register_buffer('bias', bias)
else:
self.bias = None
def forward(self, x, gain=1):
w = self.weight * self.weight_gain
b = self.bias.to(x.dtype) if self.bias is not None else None
flip_weight = (self.up == 1) # slightly faster
x = conv2d_resample.conv2d_resample(
x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding,
flip_weight=flip_weight)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
return x
def extra_repr(self):
return ' '.join(
[
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, activation={self.activation:s},',
f'up={self.up}, down={self.down}'])
class ToRGBLayer(torch.nn.Module):
def __init__(
self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False, device='cuda'):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.conv_clamp = conv_clamp
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device)
memory_format = torch.channels_last if channels_last else torch.contiguous_format
self.weight = torch.nn.Parameter(
torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to(
memory_format=memory_format))
self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device))
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
def forward(self, x, w, fused_modconv=True):
styles = self.affine(w) * self.weight_gain
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv)
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
return x
def extra_repr(self):
return f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d}'
class SynthesisBlock(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
is_last, # Is this the last block?
architecture='skip', # Architecture: 'orig', 'skip', 'resnet'.
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16=False, # Use FP16 for this block?
fp16_channels_last=False, # Use channels-last memory format with FP16?
fused_modconv_default=True, # Default value of fused_modconv. 'inference_only' = True for inference, False for training.
device='cuda',
first_layer=False,
**layer_kwargs, # Arguments for SynthesisLayer.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.first_layer = first_layer
self.in_channels = in_channels
self.w_dim = w_dim
self.resolution = resolution
self.img_channels = img_channels
self.is_last = is_last
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.fused_modconv_default = fused_modconv_default
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.num_conv = 0
self.num_torgb = 0
if in_channels == 0:
self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution], device=device))
if in_channels != 0:
if self.first_layer:
self.conv0 = SynthesisLayer(
in_channels, out_channels, w_dim=w_dim, resolution=resolution,
conv_clamp=conv_clamp, channels_last=self.channels_last, device=device, **layer_kwargs)
else:
self.conv0 = SynthesisLayer(
in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2,
resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, device=device,
**layer_kwargs)
self.num_conv += 1
self.conv1 = SynthesisLayer(
out_channels, out_channels, w_dim=w_dim, resolution=resolution,
conv_clamp=conv_clamp, channels_last=self.channels_last, device=device, **layer_kwargs)
self.num_conv += 1
if is_last or architecture == 'skip':
self.torgb = ToRGBLayer(
out_channels, img_channels, w_dim=w_dim,
conv_clamp=conv_clamp, channels_last=self.channels_last, device=device)
self.num_torgb += 1
if in_channels != 0 and architecture == 'resnet':
self.skip = Conv2dLayer(
in_channels, out_channels, kernel_size=1, bias=False, up=2,
resample_filter=resample_filter, channels_last=self.channels_last, device=device)
def forward(self, x, img, ws, force_fp32=False, fused_modconv='inference_only', update_emas=False, **layer_kwargs):
_ = update_emas # unused
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
if ws.device.type != 'cuda':
force_fp32 = True
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
fused_modconv = self.fused_modconv_default
if fused_modconv == 'inference_only':
fused_modconv = (not self.training)
##
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
# misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y + x
else:
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
if img is not None:
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img + y if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
def extra_repr(self):
return f'resolution={self.resolution:d}, architecture={self.architecture:s}'
class SynthesisNetwork(torch.nn.Module):
def __init__(
self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
channel_base=32768, # Overall multiplier for the number of channels.
channel_max=512, # Maximum number of channels in any layer.
num_fp16_res=4, # Use FP16 for the N highest resolutions.
device='cuda',
**block_kwargs, # Arguments for SynthesisBlock.
):
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
super().__init__()
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.num_fp16_res = num_fp16_res
self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)] # [4,8,16,32,64,128]
# {4: 512, 8: 512, 16: 512, 32: 512, 64: 512, 128: 256}
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
self.num_ws = 0
for res in self.block_resolutions:
in_channels = channels_dict[res // 2] if res > 4 else 0
out_channels = channels_dict[res]
is_last = (res == self.img_resolution)
use_fp16 = False
block = SynthesisBlock(
in_channels, out_channels, w_dim=w_dim, resolution=res,
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, device=device, **block_kwargs)
self.num_ws += block.num_conv
self.num_ws += block.num_torgb
setattr(self, f'b{res}', block)
def forward(self, ws, **block_kwargs):
block_ws = []
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += (block.num_conv + block.num_torgb)
x = img = None
for res, cur_ws in zip(self.block_resolutions, block_ws):
block = getattr(self, f'b{res}')
x, img = block(x, img, cur_ws, **block_kwargs)
return img
def extra_repr(self):
return ' '.join(
[
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
f'num_fp16_res={self.num_fp16_res:d}'])
class ImplicitSynthesisNetwork(torch.nn.Module):
def __init__(
self,
w_dim=512, # Intermediate latent (W) dimensionality.
input_channel=256,
out_channels=3, # Number of color channels.
latent_channel=256,
n_layers=4,
device='cuda'
):
super().__init__()
self.n_layer = n_layers
self.layers = []
self.num_ws = 0
for i_layer in range(self.n_layer):
layer = ImplicitSynthesisLayer(
w_dim=w_dim,
in_channels=input_channel if i_layer == 0 else latent_channel,
out_channels=latent_channel, device=device)
self.layers.append(layer)
self.num_ws += 1
self.layers.append(
ImplicitSynthesisLayer(
w_dim=w_dim, in_channels=latent_channel, out_channels=out_channels,
activation='sigmoid', device=device)
)
self.num_ws += 1
self.layers = torch.nn.ModuleList(self.layers)
self.w_dim = w_dim
self.out_channels = out_channels
def forward(self, ws, position, **block_kwargs):
out = position
for i in range(self.n_layer):
out = self.layers[i](ws[:, i], out)
out = self.layers[-1](ws[:, self.n_layer], out)
return out
def extra_repr(self):
return ' '.join(
[
f'w_dim={self.w_dim:d}'])
class TriPlaneTex(torch.nn.Module):
def __init__(
self,
w_dim, # Intermediate latent (W) dimensionality.
img_channels, # Number of color channels.
tri_plane_resolution=256,
device='cuda',
mlp_latent_channel=256,
n_implicit_layer=3,
feat_dim=384, # number of feat dim from encoder
n_mapping_layer=8,
sym_texture=True,
grid_scale=7.,
min_max=None,
perturb_normal=False,
**block_kwargs, # Arguments for SynthesisBlock.
):
super().__init__()
self.n_implicit_layer = n_implicit_layer
self.img_feat_dim = 32 # The setting follows Koki's paper
self.w_dim = w_dim
self.tri_plane_resolution = tri_plane_resolution
# the mapping network
self.feat_dim = feat_dim
self.n_mapping_layer = n_mapping_layer
self.embed = FullyConnectedLayer(feat_dim, w_dim, device=device)
for idx in range(n_mapping_layer):
layer = FullyConnectedLayer(w_dim, w_dim, activation='lrelu', lr_multiplier=0.1, device=device)
setattr(self, f'mapping{idx}', layer)
# self.w_dim = w_dim * 2
self.tri_plane_synthesis = SynthesisNetwork(
w_dim=self.w_dim, img_resolution=self.tri_plane_resolution,
img_channels=self.img_feat_dim * 3,
device=device,
**block_kwargs)
self.num_ws_tri_plane = self.tri_plane_synthesis.num_ws
mlp_input_channel = self.img_feat_dim + w_dim #
mlp_latent_channel = mlp_latent_channel
mlp_input_channel -= w_dim
self.mlp_synthesis = ImplicitSynthesisNetwork(
out_channels=img_channels,
n_layers=self.n_implicit_layer,
w_dim=self.w_dim,
latent_channel=mlp_latent_channel,
input_channel=mlp_input_channel,
device=device)
self.num_ws_all = self.num_ws_tri_plane + self.mlp_synthesis.num_ws
# texture related
self.sym_texture = sym_texture
self.grid_scale = grid_scale
self.shape_min = 0.
self.shape_lenght = grid_scale / 2.
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
self.perturb_normal = perturb_normal
def old_forward(
self, feat, position=None, **block_kwargs):
'''
Predict texture with given latent code
:param feat: image global feat
:param position: position for the surface points
:param block_kwargs:
:return:
'''
assert feat.shape[-1] == self.feat_dim
# mapping global feature to ws
ws = self.embed(feat)
for idx in range(self.n_mapping_layer):
layer = getattr(self, f'mapping{idx}')
ws = layer(ws)
ws = ws.unsqueeze(1).repeat(1, self.num_ws_all, 1)
plane_feat = self.tri_plane_synthesis(ws[:, :self.num_ws_tri_plane], **block_kwargs)
tri_plane = torch.split(plane_feat, self.img_feat_dim, dim=1)
normalized_tex_pos = (position - self.shape_min) / self.shape_lenght # in [-1, 1]
normalized_tex_pos = torch.clamp(normalized_tex_pos, -1.0, 1.0)
if self.sym_texture:
x_pos, y_pos, z_pos = normalized_tex_pos.unbind(-1)
normalized_tex_pos = torch.stack([x_pos.abs(), y_pos, z_pos], dim=-1)
x_feat = grid_sample_gradfix.grid_sample(
tri_plane[0],
torch.cat(
[normalized_tex_pos[:, :, 0:1], normalized_tex_pos[:, :, 1:2]],
dim=-1).unsqueeze(dim=1).detach())
y_feat = grid_sample_gradfix.grid_sample(
tri_plane[1],
torch.cat(
[normalized_tex_pos[:, :, 1:2], normalized_tex_pos[:, :, 2:3]],
dim=-1).unsqueeze(dim=1).detach())
z_feat = grid_sample_gradfix.grid_sample(
tri_plane[2],
torch.cat(
[normalized_tex_pos[:, :, 0:1], normalized_tex_pos[:, :, 2:3]],
dim=-1).unsqueeze(dim=1).detach())
final_feat = (x_feat + y_feat + z_feat)
final_feat = final_feat.squeeze(dim=2).permute(0, 2, 1) # 32dimension
final_feat_tex = final_feat
out = self.mlp_synthesis(ws[:, self.num_ws_tri_plane:], final_feat_tex)
return out
def sample(self, xyz, feat=None, feat_map=None, mvp=None, w2c=None, deform_xyz=None):
# query the deformed points or canonical points
# x = deform_xyz
x = xyz
b, h, w, c = x.shape
mvp = mvp.detach() # [b, 4, 4]
w2c = w2c.detach() # [b, 4, 4]
x = x.reshape(b, -1, c)
global_feat = feat # [b, d]
out = self.old_forward(
feat=global_feat,
position=x
)
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(b, h, w, -1)