Kwasiasomani commited on
Commit
8fca954
·
1 Parent(s): f598552

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -152
app.py DELETED
@@ -1,152 +0,0 @@
1
- # Loading key libraries
2
- import streamlit as st
3
- import os
4
- import pickle
5
- import numpy as np
6
- import pandas as pd
7
- import re
8
- from pathlib import Path
9
- from PIL import Image
10
- import matplotlib.pyplot as plt
11
- import seaborn as sns
12
-
13
-
14
-
15
- # Setting the page configurations
16
- st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
17
-
18
- # Setting the page title
19
- st.title("Grocery Store Forecasting Prediction")
20
-
21
- # Load the saved data
22
- df = pd.read_csv('Grocery.csv')
23
-
24
-
25
- toolkit = "toolkit_folder"
26
- @st.cache_resource
27
- def load_toolkit(filepath = toolkit):
28
- with open(toolkit, "rb") as file:
29
- loaded_toolkit = pickle.load(file)
30
- return loaded_toolkit
31
-
32
-
33
- toolkit = load_toolkit()
34
- Encoder = toolkit["OneHotEncoder"]
35
- model = toolkit["model"]
36
-
37
-
38
-
39
- # main sections of the app
40
- menu = st.sidebar.radio('menu',['Home view','Prediction target'])
41
-
42
- if menu == 'Home view':
43
- st.write('Grocery Store Time Series Forecasting')
44
- st.image('images1.jpg',width = 450)
45
- st.write('Graphical representation and Data Overview')
46
- if st.checkbox('Data Set '):
47
- st.table(df.head(15))
48
- st.title('Charts')
49
- graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram'])
50
- if graph == 'scatter plot':
51
- fig,ax = plt.subplots(figsize=(10,5))
52
- sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city');
53
- st.pyplot(fig)
54
-
55
- if graph == 'Bar chat':
56
- fig,ax = plt.subplots(figsize=(10,5))
57
- t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10]
58
- sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d')
59
- st.pyplot(fig)
60
-
61
- if graph == 'Histogram':
62
- fig,ax = plt.subplots(figsize=(10,5))
63
- st.write('Target Categories')
64
- sns.distplot(df.target.iloc[:20], kde=True)
65
- st.pyplot(fig)
66
-
67
-
68
-
69
-
70
-
71
- if menu == 'Prediction target':
72
- st.image('image 2.jpg', width = 460)
73
-
74
- st.sidebar.markdown('User Input Details and Information')
75
-
76
- store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique())))
77
- category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique())))
78
- onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min())
79
- year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique())))
80
- month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique())))
81
- dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min())
82
- dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min())
83
- dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min())
84
- weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min())
85
- quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min())
86
- is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min())
87
- is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min())
88
- is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min())
89
- is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min())
90
- is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min())
91
- is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min())
92
- year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min())
93
- city = st.sidebar.selectbox("city:", options= sorted(set(df["city"])))
94
- type_y = st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min())
95
- cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique())))
96
-
97
-
98
-
99
- input_df = {
100
- 'store_id':store_id,
101
- 'category_id':category_id,
102
- 'onpromotion' :onpromotion,
103
- 'year' : year,
104
- 'month' :month,
105
- 'dayofmonth' :dayofmonth,
106
- 'dayofweek' : dayofweek,
107
- 'dayofyear' : dayofyear,
108
- 'weekofyear' : weekofyear,
109
- 'quarter' : quarter,
110
- 'is_month_start' : is_month_start,
111
- 'is_month_end' : is_month_start,
112
- 'is_quarter_start' : is_quarter_start,
113
- 'is_quarter_end' : is_quarter_end,
114
- 'is_year_start' : is_year_start,
115
- 'is_year_end' : is_year_end,
116
- 'year_weekofyear' : year_weekofyear,
117
- 'city' : city,
118
- 'type' : type_y,
119
- 'cluster': cluster
120
- }
121
-
122
- # Put the input dictionary in a dataset
123
- input_data = pd.DataFrame(input_df, index = [0])
124
-
125
-
126
-
127
- # defining categories and numeric columns
128
-
129
- col = ['city']
130
- #columns = list(input_data.columns)
131
- input_encoded_df = pd.DataFrame(Encoder.transform(input_data).toarray(),
132
- columns=Encoder.get_feature_names_out(col))
133
-
134
- #encoded_cat = Encoder.transform(input_data[col])
135
-
136
- # we dropped the categorical encoder column before we concat
137
- train_enc = input_data.drop(['city'],axis = 1)
138
- #input_d = pd.concat([train_enc, encoded_cat], axis=1)
139
- input_d = pd.concat([train_enc, input_encoded_df], axis=1)
140
- prediction = input_d.values
141
-
142
-
143
-
144
- # convert input_data to a numpy array before flattening to convert it back to a 2D array
145
- input_df= input_d.to_numpy()
146
- prediction = model.predict(prediction.flatten().reshape(1, -1))
147
-
148
-
149
- if st.button('Predict'):
150
- st.success('The predicted target is ' + str(round(prediction[0],2)))
151
-
152
-