Spaces:
Runtime error
Runtime error
Commit
·
8fca954
1
Parent(s):
f598552
Delete app.py
Browse files
app.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
# Loading key libraries
|
2 |
-
import streamlit as st
|
3 |
-
import os
|
4 |
-
import pickle
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import re
|
8 |
-
from pathlib import Path
|
9 |
-
from PIL import Image
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
import seaborn as sns
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Setting the page configurations
|
16 |
-
st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
|
17 |
-
|
18 |
-
# Setting the page title
|
19 |
-
st.title("Grocery Store Forecasting Prediction")
|
20 |
-
|
21 |
-
# Load the saved data
|
22 |
-
df = pd.read_csv('Grocery.csv')
|
23 |
-
|
24 |
-
|
25 |
-
toolkit = "toolkit_folder"
|
26 |
-
@st.cache_resource
|
27 |
-
def load_toolkit(filepath = toolkit):
|
28 |
-
with open(toolkit, "rb") as file:
|
29 |
-
loaded_toolkit = pickle.load(file)
|
30 |
-
return loaded_toolkit
|
31 |
-
|
32 |
-
|
33 |
-
toolkit = load_toolkit()
|
34 |
-
Encoder = toolkit["OneHotEncoder"]
|
35 |
-
model = toolkit["model"]
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
# main sections of the app
|
40 |
-
menu = st.sidebar.radio('menu',['Home view','Prediction target'])
|
41 |
-
|
42 |
-
if menu == 'Home view':
|
43 |
-
st.write('Grocery Store Time Series Forecasting')
|
44 |
-
st.image('images1.jpg',width = 450)
|
45 |
-
st.write('Graphical representation and Data Overview')
|
46 |
-
if st.checkbox('Data Set '):
|
47 |
-
st.table(df.head(15))
|
48 |
-
st.title('Charts')
|
49 |
-
graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram'])
|
50 |
-
if graph == 'scatter plot':
|
51 |
-
fig,ax = plt.subplots(figsize=(10,5))
|
52 |
-
sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city');
|
53 |
-
st.pyplot(fig)
|
54 |
-
|
55 |
-
if graph == 'Bar chat':
|
56 |
-
fig,ax = plt.subplots(figsize=(10,5))
|
57 |
-
t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10]
|
58 |
-
sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d')
|
59 |
-
st.pyplot(fig)
|
60 |
-
|
61 |
-
if graph == 'Histogram':
|
62 |
-
fig,ax = plt.subplots(figsize=(10,5))
|
63 |
-
st.write('Target Categories')
|
64 |
-
sns.distplot(df.target.iloc[:20], kde=True)
|
65 |
-
st.pyplot(fig)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
if menu == 'Prediction target':
|
72 |
-
st.image('image 2.jpg', width = 460)
|
73 |
-
|
74 |
-
st.sidebar.markdown('User Input Details and Information')
|
75 |
-
|
76 |
-
store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique())))
|
77 |
-
category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique())))
|
78 |
-
onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min())
|
79 |
-
year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique())))
|
80 |
-
month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique())))
|
81 |
-
dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min())
|
82 |
-
dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min())
|
83 |
-
dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min())
|
84 |
-
weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min())
|
85 |
-
quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min())
|
86 |
-
is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min())
|
87 |
-
is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min())
|
88 |
-
is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min())
|
89 |
-
is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min())
|
90 |
-
is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min())
|
91 |
-
is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min())
|
92 |
-
year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min())
|
93 |
-
city = st.sidebar.selectbox("city:", options= sorted(set(df["city"])))
|
94 |
-
type_y = st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min())
|
95 |
-
cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique())))
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
input_df = {
|
100 |
-
'store_id':store_id,
|
101 |
-
'category_id':category_id,
|
102 |
-
'onpromotion' :onpromotion,
|
103 |
-
'year' : year,
|
104 |
-
'month' :month,
|
105 |
-
'dayofmonth' :dayofmonth,
|
106 |
-
'dayofweek' : dayofweek,
|
107 |
-
'dayofyear' : dayofyear,
|
108 |
-
'weekofyear' : weekofyear,
|
109 |
-
'quarter' : quarter,
|
110 |
-
'is_month_start' : is_month_start,
|
111 |
-
'is_month_end' : is_month_start,
|
112 |
-
'is_quarter_start' : is_quarter_start,
|
113 |
-
'is_quarter_end' : is_quarter_end,
|
114 |
-
'is_year_start' : is_year_start,
|
115 |
-
'is_year_end' : is_year_end,
|
116 |
-
'year_weekofyear' : year_weekofyear,
|
117 |
-
'city' : city,
|
118 |
-
'type' : type_y,
|
119 |
-
'cluster': cluster
|
120 |
-
}
|
121 |
-
|
122 |
-
# Put the input dictionary in a dataset
|
123 |
-
input_data = pd.DataFrame(input_df, index = [0])
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# defining categories and numeric columns
|
128 |
-
|
129 |
-
col = ['city']
|
130 |
-
#columns = list(input_data.columns)
|
131 |
-
input_encoded_df = pd.DataFrame(Encoder.transform(input_data).toarray(),
|
132 |
-
columns=Encoder.get_feature_names_out(col))
|
133 |
-
|
134 |
-
#encoded_cat = Encoder.transform(input_data[col])
|
135 |
-
|
136 |
-
# we dropped the categorical encoder column before we concat
|
137 |
-
train_enc = input_data.drop(['city'],axis = 1)
|
138 |
-
#input_d = pd.concat([train_enc, encoded_cat], axis=1)
|
139 |
-
input_d = pd.concat([train_enc, input_encoded_df], axis=1)
|
140 |
-
prediction = input_d.values
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
# convert input_data to a numpy array before flattening to convert it back to a 2D array
|
145 |
-
input_df= input_d.to_numpy()
|
146 |
-
prediction = model.predict(prediction.flatten().reshape(1, -1))
|
147 |
-
|
148 |
-
|
149 |
-
if st.button('Predict'):
|
150 |
-
st.success('The predicted target is ' + str(round(prediction[0],2)))
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|