lixiang46
update
1ae1c49
raw
history blame
4.74 kB
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
from PIL import Image
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
pipe = StableDiffusionXLInpaintPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
pipe.to(device)
pipe.enable_attention_slicing()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
image,
negative_prompt = "",
seed = 0,
randomize_seed = False,
guidance_scale = 5.0,
num_inference_steps = 25
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
width, height = image['background'].size
result = pipe(
prompt = prompt,
image = image['background'],
mask_image = image['layers'][0],
height=height,
width=width,
guidance_scale = guidance_scale,
generator= generator,
num_inference_steps= num_inference_steps,
negative_prompt = negative_prompt,
num_images_per_prompt = 1,
strength = 0.999
).images[0]
return result
examples = [
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.ImageEditor(type='pil', image_mode='RGB', layers=False, brush=gr.Brush(colors=["#AAAAAA"], color_mode="fixed"))
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
run_button = gr.Button("Run")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
# with gr.Row():
# gr.Examples(
# fn = infer,
# examples = examples,
# inputs = [prompt, ip_adapter_image, ip_adapter_scale],
# outputs = [result]
# )
run_button.click(
fn = infer,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result]
)
Kolors.queue().launch(debug=True)