Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline | |
| import time | |
| # Load model and scheduler | |
| ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
| def generate_image(prompt, negative_prompt="Low quality", width=512, height=512): | |
| # Run pipeline in inference (sample random noise and denoise) | |
| start_time = time.time() | |
| images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6, negative_prompts=[negative_prompt]).images | |
| # Resize image to desired width and height | |
| resized_images = [image.resize((int(width), int(height))) for image in images] | |
| # Save images | |
| for idx, image in enumerate(resized_images): | |
| image.save(f"squirrel-{idx}.png") | |
| end_time = time.time() | |
| elapsed_time = round(end_time - start_time, 2) | |
| return resized_images[0] | |
| # Define the interface | |
| iface = gr.Interface( | |
| fn=generate_image, | |
| inputs=["text", "text", "number", "number"], | |
| outputs=gr.outputs.Image(type="pil", label="Generated Image"), | |
| layout="vertical", | |
| title="Image Generation", | |
| description="Generate images based on prompts", | |
| article="For more information, visit the documentation: [link](https://docs.gradio.app/)", | |
| examples=[["A painting of a squirrel eating a burger", "Low quality", 512, 512]] | |
| ) | |
| # Launch the interface | |
| iface.launch() | |