Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
# Load model and scheduler | |
ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
def generate_image(prompt, negative_prompt, width, height): | |
# Run pipeline in inference (sample random noise and denoise) | |
images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6, negative_prompts=[negative_prompt]).images | |
# Resize image to desired width and height | |
resized_images = [image.resize((width, height)) for image in images] | |
# Save images | |
for idx, image in enumerate(resized_images): | |
image.save(f"squirrel-{idx}.png") | |
return "Images generated successfully!" | |
# Define the interface | |
iface = gr.Interface( | |
fn=generate_image, | |
inputs=["text", "text", "number", "number"], | |
outputs="text", | |
layout="vertical", | |
title="Image Generation", | |
description="Generate images based on prompts.", | |
article="For more information, visit the documentation: [link](https://docs.gradio.app/)", | |
) | |
# Launch the interface | |
iface.launch() | |