kandinsky2.2 / app.py
Kvikontent's picture
Create app.py
8e5c6f4
raw
history blame
1.09 kB
import gradio as gr
from PIL import Image
from diffusers import DiffusionPipeline
# Load model and scheduler
ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
def generate_image(prompt, negative_prompt, width, height):
# Run pipeline in inference (sample random noise and denoise)
images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6, negative_prompts=[negative_prompt]).images
# Resize image to desired width and height
resized_images = [image.resize((width, height)) for image in images]
# Save images
for idx, image in enumerate(resized_images):
image.save(f"squirrel-{idx}.png")
return "Images generated successfully!"
# Define the interface
iface = gr.Interface(
fn=generate_image,
inputs=["text", "text", "number", "number"],
outputs="text",
layout="vertical",
title="Image Generation",
description="Generate images based on prompts.",
article="For more information, visit the documentation: [link](https://docs.gradio.app/)",
)
# Launch the interface
iface.launch()