Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, FalconModel | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b") | |
| model = FalconModel.from_pretrained("Rocketknight1/falcon-rw-1b") | |
| model.to(device) | |
| def generate_text(prompt, max_new_tokens=100, do_sample=True): | |
| model_inputs = tokenizer([prompt], return_tensors="pt").to(device) | |
| generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=do_sample) | |
| return tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
| st.title("KviGPT - Hugging Face Chat") | |
| user_input = st.text_input("You:", value="My favourite condiment is ") | |
| if st.button("Send"): | |
| prompt = user_input | |
| model_response = generate_text(prompt)[0] | |
| st.write("KviGPT:", model_response) |