Kurokabe commited on
Commit
7a9ce61
1 Parent(s): 3be620b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tempfile
2
+
3
+ import cv2
4
+ import ffmpegio
5
+ import gradio as gr
6
+ import numpy as np
7
+ import omegaconf
8
+ import tensorflow as tf
9
+ from pyprojroot.pyprojroot import here
10
+ from huggingface_hub import hf_hub_url, cached_download
11
+
12
+ from ganime.model.vqgan_clean.experimental.net2net_v3 import Net2Net
13
+
14
+ IMAGE_SHAPE = (64, 128, 3)
15
+
16
+ vqgan_path = cached_download(
17
+ hf_hub_url("Kurokabe", "VQGAN_Kimetsu-no-yaiba_Tensorflow/vqgan_kny_image_full")
18
+ )
19
+ gpt_path = cached_download(
20
+ hf_hub_url("Kurokabe", "GANime_Kimetsu-no-yaiba_Tensorflow/ganime_kny_video_full")
21
+ )
22
+
23
+ cfg = omegaconf.OmegaConf.load(here("configs/kny_video_gpt2_large_gradio.yaml"))
24
+ cfg["model"]["first_stage_config"]["checkpoint_path"] = vqgan_path + "/checkpoint"
25
+ cfg["model"]["transformer_config"]["checkpoint_path"] = gpt_path + "/checkpoint"
26
+
27
+ model = Net2Net(**cfg["model"], trainer_config=cfg["train"], num_replicas=1)
28
+ model.first_stage_model.build((20, *IMAGE_SHAPE))
29
+
30
+
31
+ # def save_video(video):
32
+ # b, f, h, w, c = 1, 20, 500, 500, 3
33
+
34
+ # # filename = output_file.name
35
+ # filename = "./test_video.mp4"
36
+ # images = []
37
+ # for i in range(f):
38
+ # # image = video[0][i].numpy()
39
+ # # image = 255 * image # Now scale by 255
40
+ # # image = image.astype(np.uint8)
41
+ # images.append(np.random.randint(0, 255, (h, w, c), dtype=np.uint8))
42
+
43
+ # ffmpegio.video.write(filename, 20, np.array(images), overwrite=True)
44
+ # return filename
45
+
46
+
47
+ def save_video(video):
48
+ output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
49
+ b, f, h, w, c = video.shape
50
+
51
+ filename = output_file.name
52
+ video = video.numpy()
53
+ video = video * 255
54
+ video = video.astype(np.uint8)
55
+ ffmpegio.video.write(filename, 20, video, overwrite=True)
56
+ return filename
57
+
58
+
59
+ def resize_if_necessary(image):
60
+ if image.shape[0] != 64 and image.shape[1] != 128:
61
+ image = tf.image.resize(image, (64, 128))
62
+ return image
63
+
64
+
65
+ def normalize(image):
66
+ image = (tf.cast(image, tf.float32) / 127.5) - 1
67
+
68
+ return image
69
+
70
+
71
+ def generate(first, last, n_frames):
72
+ # n_frames = 20
73
+ n_frames = int(n_frames)
74
+ first = resize_if_necessary(first)
75
+ last = resize_if_necessary(last)
76
+ first = normalize(first)
77
+ last = normalize(last)
78
+ data = {
79
+ "first_frame": np.expand_dims(first, axis=0),
80
+ "last_frame": np.expand_dims(last, axis=0),
81
+ "y": None,
82
+ "n_frames": [n_frames],
83
+ "remaining_frames": [list(reversed(range(n_frames)))],
84
+ }
85
+ generated = model.predict(data)
86
+
87
+ return save_video(generated)
88
+
89
+
90
+ gr.Interface(
91
+ generate,
92
+ inputs=[
93
+ gr.Image(label="Upload the first image"),
94
+ gr.Image(label="Upload the last image"),
95
+ gr.Slider(
96
+ label="Number of frame to generate",
97
+ minimum=15,
98
+ maximum=100,
99
+ value=15,
100
+ step=1,
101
+ ),
102
+ ],
103
+ outputs="video",
104
+ title="Generate a video from the first and last frame",
105
+ ).launch(share=True)