Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch.nn.functional as F | |
def load_model(model_directory): | |
# Assuming 'config.json' and 'pytorch_model.bin' are in 'model_directory' | |
model = AutoModelForSequenceClassification.from_pretrained(model_directory) | |
tokenizer = AutoTokenizer.from_pretrained(model_directory) | |
return model, tokenizer | |
def predict(model, tokenizer, input_text): | |
# Preprocess the input | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) | |
# Move tensors to the same device as the model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Model in evaluation mode | |
model.eval() | |
# Make the model generate a prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Convert logits to probabilities | |
probabilities = F.softmax(logits, dim=1) | |
# Get the predicted class and the probabilities | |
predicted_class = torch.argmax(probabilities, dim=1).cpu().numpy() | |
probabilities = probabilities.cpu().numpy() | |
return predicted_class, probabilities | |
def main(): | |
# Replace 'your-model-directory' with the actual path to your model directory | |
model_directory = "Kurkur99/modeling" # e.g., "Kurkur99/Kurkur99/transactionmerchant/model_directory" | |
model, tokenizer = load_model(model_directory) | |
# Example input text | |
input_text = "Example input text for prediction" | |
# Get predictions | |
predicted_class, probabilities = predict(model, tokenizer, input_text) | |
# Output the results | |
print(f"Predicted Class: {predicted_class[0]}") | |
print(f"Probabilities: {probabilities[0]}") | |
if __name__ == "__main__": | |
main() | |