Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- app.py +22 -0
- eda.py +23 -0
- my_model.h5 +3 -0
- prediction.py +17 -0
- preprocessing_data.pkl +3 -0
- requirements.txt +23 -0
- threads_reviews.csv +0 -0
- tokenizer.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from eda import display_eda
|
4 |
+
from prediction import predict_and_strategy
|
5 |
+
|
6 |
+
# Load the data
|
7 |
+
data = pd.read_csv('threads_reviews.csv')
|
8 |
+
|
9 |
+
st.title("Sentiment Analysis and Business Strategy")
|
10 |
+
|
11 |
+
# EDA Section
|
12 |
+
st.header("Exploratory Data Analysis")
|
13 |
+
if st.checkbox("Show EDA", False): # Checkbox to toggle EDA display
|
14 |
+
display_eda(data)
|
15 |
+
|
16 |
+
# Prediction Section
|
17 |
+
st.header("Prediction")
|
18 |
+
user_input = st.text_area("Enter text for sentiment analysis:", "")
|
19 |
+
if st.button("Analyze"):
|
20 |
+
sentiment, strategy = predict_and_strategy(user_input)
|
21 |
+
st.write(f"Sentiment: {sentiment}")
|
22 |
+
st.write(f"Strategy: {strategy}")
|
eda.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from wordcloud import WordCloud
|
5 |
+
|
6 |
+
def display_eda(data):
|
7 |
+
# Distribution of sentiments
|
8 |
+
st.subheader("Distribution of Sentiments")
|
9 |
+
sentiment_counts = data['sentiment'].value_counts()
|
10 |
+
st.bar_chart(sentiment_counts)
|
11 |
+
|
12 |
+
# Word cloud for each sentiment
|
13 |
+
st.subheader("Word Clouds for Sentiments")
|
14 |
+
sentiments = data['sentiment'].unique()
|
15 |
+
for sentiment in sentiments:
|
16 |
+
st.write(f"Word Cloud for {sentiment}")
|
17 |
+
subset = data[data['sentiment'] == sentiment]
|
18 |
+
text = " ".join(review for review in subset['processed_review'])
|
19 |
+
wordcloud = WordCloud(max_words=100, background_color="white").generate(text)
|
20 |
+
plt.figure()
|
21 |
+
plt.imshow(wordcloud, interpolation="bilinear")
|
22 |
+
plt.axis("off")
|
23 |
+
st.pyplot()
|
my_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e57bd45f6afda98272478433c8df6e4ed7a2d19b41c9f8b4c8de54ff0da7264
|
3 |
+
size 3911040
|
prediction.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
nlp = pipeline("sentiment-analysis")
|
4 |
+
|
5 |
+
def predict_and_strategy(text):
|
6 |
+
result = nlp(text)
|
7 |
+
sentiment = result[0]['label']
|
8 |
+
|
9 |
+
# Provide strategy based on sentiment
|
10 |
+
if sentiment == "POSITIVE":
|
11 |
+
strategy = "Engage with these customers to make them brand ambassadors."
|
12 |
+
elif sentiment == "NEUTRAL":
|
13 |
+
strategy = "Try to find out what's missing and engage more with these customers."
|
14 |
+
else:
|
15 |
+
strategy = "Address the concerns of these customers immediately."
|
16 |
+
|
17 |
+
return sentiment, strategy
|
preprocessing_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f2a2425763e25b1ad53362b6c2fe6b9833611484f11058b70d609ef0c18e07e
|
3 |
+
size 90
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Basic libraries
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
matplotlib
|
5 |
+
seaborn
|
6 |
+
|
7 |
+
# Machine Learning and Deep Learning
|
8 |
+
tensorflow
|
9 |
+
keras
|
10 |
+
scikit-learn
|
11 |
+
|
12 |
+
# Natural Language Processing
|
13 |
+
transformers # from Hugging Face
|
14 |
+
tokenizers # often used alongside transformers
|
15 |
+
|
16 |
+
# Web App
|
17 |
+
streamlit
|
18 |
+
|
19 |
+
# Miscellaneous
|
20 |
+
requests
|
21 |
+
|
22 |
+
# Depending on your specific needs or the deployment platform, you might also need:
|
23 |
+
gunicorn # WSGI HTTP Server for UNIX, often used for deploying Flask and Streamlit apps on platforms like Heroku
|
threads_reviews.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ea16cd2ff6a9a38106463fb4e07bafbd57ed8180cac5d7cd07a4153eb1effd7
|
3 |
+
size 574685
|