Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,66 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load the
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
st.
|
13 |
-
if st.checkbox("Show EDA", False): # Checkbox to toggle EDA display
|
14 |
-
display_eda(data)
|
15 |
|
16 |
-
#
|
17 |
-
st.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from wordcloud import WordCloud
|
6 |
+
from sentiment_labeling import add_sentiment_column
|
7 |
+
from keras.models import load_model
|
8 |
+
import pickle
|
9 |
|
10 |
+
# Load the model and tokenizer
|
11 |
+
model = load_model('model.h5')
|
12 |
+
with open('tokenizer.pkl', 'rb') as f:
|
13 |
+
tokenizer = pickle.load(f)
|
14 |
|
15 |
+
def predict_sentiment(text):
|
16 |
+
# Tokenize and pad the input text
|
17 |
+
seq = tokenizer.texts_to_sequences([text])
|
18 |
+
padded_seq = pad_sequences(seq, maxlen=MAX_LENGTH)
|
19 |
+
# Predict using the model
|
20 |
+
prediction = model.predict(padded_seq)
|
21 |
+
return np.argmax(prediction)
|
22 |
|
23 |
+
# Streamlit app
|
24 |
+
st.title("Thread Review Sentiment Analysis")
|
|
|
|
|
25 |
|
26 |
+
# Upload CSV file
|
27 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
28 |
+
if uploaded_file:
|
29 |
+
data = pd.read_csv(uploaded_file)
|
30 |
+
st.write("Data Loaded Successfully!")
|
31 |
+
|
32 |
+
# Display raw data
|
33 |
+
if st.checkbox("Show raw data"):
|
34 |
+
st.write(data)
|
35 |
+
|
36 |
+
# Add sentiment column
|
37 |
+
data = add_sentiment_column(data)
|
38 |
+
|
39 |
+
# Distribution of sentiments
|
40 |
+
st.subheader("Distribution of Sentiments")
|
41 |
+
sentiment_counts = data['sentiment'].value_counts()
|
42 |
+
fig, ax = plt.subplots()
|
43 |
+
sentiment_counts.plot(kind='bar', ax=ax)
|
44 |
+
ax.set_title('Distribution of Sentiments')
|
45 |
+
ax.set_xlabel('Sentiment')
|
46 |
+
ax.set_ylabel('Count')
|
47 |
+
st.pyplot(fig)
|
48 |
+
|
49 |
+
# Word cloud for each sentiment
|
50 |
+
st.subheader("Word Clouds for Sentiments")
|
51 |
+
sentiments = ['positive', 'neutral', 'negative']
|
52 |
+
for sentiment in sentiments:
|
53 |
+
st.write(f"Word Cloud for {sentiment}")
|
54 |
+
subset = data[data['sentiment'] == sentiment]
|
55 |
+
text = " ".join(review for review in subset['review'])
|
56 |
+
wordcloud = WordCloud(max_words=100, background_color="white").generate(text)
|
57 |
+
plt.figure()
|
58 |
+
plt.imshow(wordcloud, interpolation="bilinear")
|
59 |
+
plt.axis("off")
|
60 |
+
st.pyplot()
|
61 |
+
|
62 |
+
# Individual review prediction
|
63 |
+
user_input = st.text_area("Type a review here to predict its sentiment:")
|
64 |
+
if user_input:
|
65 |
+
sentiment_pred = predict_sentiment(user_input)
|
66 |
+
st.write(f"The predicted sentiment is: {sentiment_pred}")
|