Spaces:
Running
on
Zero
Running
on
Zero
| import csv | |
| import io | |
| import json | |
| import math | |
| import os | |
| import random | |
| from threading import Thread | |
| import albumentations | |
| import cv2 | |
| import gc | |
| import numpy as np | |
| import torch | |
| import torchvision.transforms as transforms | |
| from func_timeout import func_timeout, FunctionTimedOut | |
| from decord import VideoReader | |
| from PIL import Image | |
| from torch.utils.data import BatchSampler, Sampler | |
| from torch.utils.data.dataset import Dataset | |
| from contextlib import contextmanager | |
| VIDEO_READER_TIMEOUT = 20 | |
| def get_random_mask(shape, image_start_only=False): | |
| f, c, h, w = shape | |
| mask = torch.zeros((f, 1, h, w), dtype=torch.uint8) | |
| if not image_start_only: | |
| if f != 1: | |
| mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05]) | |
| else: | |
| mask_index = np.random.choice([0, 1], p = [0.2, 0.8]) | |
| if mask_index == 0: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围 | |
| block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围 | |
| start_x = max(center_x - block_size_x // 2, 0) | |
| end_x = min(center_x + block_size_x // 2, w) | |
| start_y = max(center_y - block_size_y // 2, 0) | |
| end_y = min(center_y + block_size_y // 2, h) | |
| mask[:, :, start_y:end_y, start_x:end_x] = 1 | |
| elif mask_index == 1: | |
| mask[:, :, :, :] = 1 | |
| elif mask_index == 2: | |
| mask_frame_index = np.random.randint(1, 5) | |
| mask[mask_frame_index:, :, :, :] = 1 | |
| elif mask_index == 3: | |
| mask_frame_index = np.random.randint(1, 5) | |
| mask[mask_frame_index:-mask_frame_index, :, :, :] = 1 | |
| elif mask_index == 4: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围 | |
| block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围 | |
| start_x = max(center_x - block_size_x // 2, 0) | |
| end_x = min(center_x + block_size_x // 2, w) | |
| start_y = max(center_y - block_size_y // 2, 0) | |
| end_y = min(center_y + block_size_y // 2, h) | |
| mask_frame_before = np.random.randint(0, f // 2) | |
| mask_frame_after = np.random.randint(f // 2, f) | |
| mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1 | |
| elif mask_index == 5: | |
| mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8) | |
| elif mask_index == 6: | |
| num_frames_to_mask = random.randint(1, max(f // 2, 1)) | |
| frames_to_mask = random.sample(range(f), num_frames_to_mask) | |
| for i in frames_to_mask: | |
| block_height = random.randint(1, h // 4) | |
| block_width = random.randint(1, w // 4) | |
| top_left_y = random.randint(0, h - block_height) | |
| top_left_x = random.randint(0, w - block_width) | |
| mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1 | |
| elif mask_index == 7: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴 | |
| b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴 | |
| for i in range(h): | |
| for j in range(w): | |
| if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1: | |
| mask[:, :, i, j] = 1 | |
| elif mask_index == 8: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() | |
| for i in range(h): | |
| for j in range(w): | |
| if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2: | |
| mask[:, :, i, j] = 1 | |
| elif mask_index == 9: | |
| for idx in range(f): | |
| if np.random.rand() > 0.5: | |
| mask[idx, :, :, :] = 1 | |
| else: | |
| raise ValueError(f"The mask_index {mask_index} is not define") | |
| else: | |
| if f != 1: | |
| mask[1:, :, :, :] = 1 | |
| else: | |
| mask[:, :, :, :] = 1 | |
| return mask | |
| class ImageVideoSampler(BatchSampler): | |
| """A sampler wrapper for grouping images with similar aspect ratio into a same batch. | |
| Args: | |
| sampler (Sampler): Base sampler. | |
| dataset (Dataset): Dataset providing data information. | |
| batch_size (int): Size of mini-batch. | |
| drop_last (bool): If ``True``, the sampler will drop the last batch if | |
| its size would be less than ``batch_size``. | |
| aspect_ratios (dict): The predefined aspect ratios. | |
| """ | |
| def __init__(self, | |
| sampler: Sampler, | |
| dataset: Dataset, | |
| batch_size: int, | |
| drop_last: bool = False | |
| ) -> None: | |
| if not isinstance(sampler, Sampler): | |
| raise TypeError('sampler should be an instance of ``Sampler``, ' | |
| f'but got {sampler}') | |
| if not isinstance(batch_size, int) or batch_size <= 0: | |
| raise ValueError('batch_size should be a positive integer value, ' | |
| f'but got batch_size={batch_size}') | |
| self.sampler = sampler | |
| self.dataset = dataset | |
| self.batch_size = batch_size | |
| self.drop_last = drop_last | |
| # buckets for each aspect ratio | |
| self.bucket = {'image':[], 'video':[]} | |
| def __iter__(self): | |
| for idx in self.sampler: | |
| content_type = self.dataset.dataset[idx].get('type', 'image') | |
| self.bucket[content_type].append(idx) | |
| # yield a batch of indices in the same aspect ratio group | |
| if len(self.bucket['video']) == self.batch_size: | |
| bucket = self.bucket['video'] | |
| yield bucket[:] | |
| del bucket[:] | |
| elif len(self.bucket['image']) == self.batch_size: | |
| bucket = self.bucket['image'] | |
| yield bucket[:] | |
| del bucket[:] | |
| def VideoReader_contextmanager(*args, **kwargs): | |
| vr = VideoReader(*args, **kwargs) | |
| try: | |
| yield vr | |
| finally: | |
| del vr | |
| gc.collect() | |
| def get_video_reader_batch(video_reader, batch_index): | |
| frames = video_reader.get_batch(batch_index).asnumpy() | |
| return frames | |
| def resize_frame(frame, target_short_side): | |
| h, w, _ = frame.shape | |
| if h < w: | |
| if target_short_side > h: | |
| return frame | |
| new_h = target_short_side | |
| new_w = int(target_short_side * w / h) | |
| else: | |
| if target_short_side > w: | |
| return frame | |
| new_w = target_short_side | |
| new_h = int(target_short_side * h / w) | |
| resized_frame = cv2.resize(frame, (new_w, new_h)) | |
| return resized_frame | |
| class ImageVideoDataset(Dataset): | |
| def __init__( | |
| self, | |
| ann_path, data_root=None, | |
| video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16, | |
| image_sample_size=512, | |
| video_repeat=0, | |
| text_drop_ratio=0.1, | |
| enable_bucket=False, | |
| video_length_drop_start=0.0, | |
| video_length_drop_end=1.0, | |
| enable_inpaint=False, | |
| ): | |
| # Loading annotations from files | |
| print(f"loading annotations from {ann_path} ...") | |
| if ann_path.endswith('.csv'): | |
| with open(ann_path, 'r') as csvfile: | |
| dataset = list(csv.DictReader(csvfile)) | |
| elif ann_path.endswith('.json'): | |
| dataset = json.load(open(ann_path)) | |
| self.data_root = data_root | |
| # It's used to balance num of images and videos. | |
| self.dataset = [] | |
| for data in dataset: | |
| if data.get('type', 'image') != 'video': | |
| self.dataset.append(data) | |
| if video_repeat > 0: | |
| for _ in range(video_repeat): | |
| for data in dataset: | |
| if data.get('type', 'image') == 'video': | |
| self.dataset.append(data) | |
| del dataset | |
| self.length = len(self.dataset) | |
| print(f"data scale: {self.length}") | |
| # TODO: enable bucket training | |
| self.enable_bucket = enable_bucket | |
| self.text_drop_ratio = text_drop_ratio | |
| self.enable_inpaint = enable_inpaint | |
| self.video_length_drop_start = video_length_drop_start | |
| self.video_length_drop_end = video_length_drop_end | |
| # Video params | |
| self.video_sample_stride = video_sample_stride | |
| self.video_sample_n_frames = video_sample_n_frames | |
| self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size) | |
| self.video_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(min(self.video_sample_size)), | |
| transforms.CenterCrop(self.video_sample_size), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
| ] | |
| ) | |
| # Image params | |
| self.image_sample_size = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size) | |
| self.image_transforms = transforms.Compose([ | |
| transforms.Resize(min(self.image_sample_size)), | |
| transforms.CenterCrop(self.image_sample_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5]) | |
| ]) | |
| self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size)) | |
| def get_batch(self, idx): | |
| data_info = self.dataset[idx % len(self.dataset)] | |
| if data_info.get('type', 'image')=='video': | |
| video_id, text = data_info['file_path'], data_info['text'] | |
| if self.data_root is None: | |
| video_dir = video_id | |
| else: | |
| video_dir = os.path.join(self.data_root, video_id) | |
| with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader: | |
| min_sample_n_frames = min( | |
| self.video_sample_n_frames, | |
| int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride) | |
| ) | |
| if min_sample_n_frames == 0: | |
| raise ValueError(f"No Frames in video.") | |
| video_length = int(self.video_length_drop_end * len(video_reader)) | |
| clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1) | |
| start_idx = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0 | |
| batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int) | |
| try: | |
| sample_args = (video_reader, batch_index) | |
| pixel_values = func_timeout( | |
| VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args | |
| ) | |
| resized_frames = [] | |
| for i in range(len(pixel_values)): | |
| frame = pixel_values[i] | |
| resized_frame = resize_frame(frame, self.larger_side_of_image_and_video) | |
| resized_frames.append(resized_frame) | |
| pixel_values = np.array(resized_frames) | |
| except FunctionTimedOut: | |
| raise ValueError(f"Read {idx} timeout.") | |
| except Exception as e: | |
| raise ValueError(f"Failed to extract frames from video. Error is {e}.") | |
| if not self.enable_bucket: | |
| pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() | |
| pixel_values = pixel_values / 255. | |
| del video_reader | |
| else: | |
| pixel_values = pixel_values | |
| if not self.enable_bucket: | |
| pixel_values = self.video_transforms(pixel_values) | |
| # Random use no text generation | |
| if random.random() < self.text_drop_ratio: | |
| text = '' | |
| return pixel_values, text, 'video' | |
| else: | |
| image_path, text = data_info['file_path'], data_info['text'] | |
| if self.data_root is not None: | |
| image_path = os.path.join(self.data_root, image_path) | |
| image = Image.open(image_path).convert('RGB') | |
| if not self.enable_bucket: | |
| image = self.image_transforms(image).unsqueeze(0) | |
| else: | |
| image = np.expand_dims(np.array(image), 0) | |
| if random.random() < self.text_drop_ratio: | |
| text = '' | |
| return image, text, 'image' | |
| def __len__(self): | |
| return self.length | |
| def __getitem__(self, idx): | |
| data_info = self.dataset[idx % len(self.dataset)] | |
| data_type = data_info.get('type', 'image') | |
| while True: | |
| sample = {} | |
| try: | |
| data_info_local = self.dataset[idx % len(self.dataset)] | |
| data_type_local = data_info_local.get('type', 'image') | |
| if data_type_local != data_type: | |
| raise ValueError("data_type_local != data_type") | |
| pixel_values, name, data_type = self.get_batch(idx) | |
| sample["pixel_values"] = pixel_values | |
| sample["text"] = name | |
| sample["data_type"] = data_type | |
| sample["idx"] = idx | |
| if len(sample) > 0: | |
| break | |
| except Exception as e: | |
| print(e, self.dataset[idx % len(self.dataset)]) | |
| idx = random.randint(0, self.length-1) | |
| if self.enable_inpaint and not self.enable_bucket: | |
| mask = get_random_mask(pixel_values.size()) | |
| mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask | |
| sample["mask_pixel_values"] = mask_pixel_values | |
| sample["mask"] = mask | |
| clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous() | |
| clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255 | |
| sample["clip_pixel_values"] = clip_pixel_values | |
| ref_pixel_values = sample["pixel_values"][0].unsqueeze(0) | |
| if (mask == 1).all(): | |
| ref_pixel_values = torch.ones_like(ref_pixel_values) * -1 | |
| sample["ref_pixel_values"] = ref_pixel_values | |
| return sample | |
| class ImageVideoControlDataset(Dataset): | |
| def __init__( | |
| self, | |
| ann_path, data_root=None, | |
| video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16, | |
| image_sample_size=512, | |
| video_repeat=0, | |
| text_drop_ratio=0.1, | |
| enable_bucket=False, | |
| video_length_drop_start=0.0, | |
| video_length_drop_end=1.0, | |
| enable_inpaint=False, | |
| ): | |
| # Loading annotations from files | |
| print(f"loading annotations from {ann_path} ...") | |
| if ann_path.endswith('.csv'): | |
| with open(ann_path, 'r') as csvfile: | |
| dataset = list(csv.DictReader(csvfile)) | |
| elif ann_path.endswith('.json'): | |
| dataset = json.load(open(ann_path)) | |
| self.data_root = data_root | |
| # It's used to balance num of images and videos. | |
| self.dataset = [] | |
| for data in dataset: | |
| if data.get('type', 'image') != 'video': | |
| self.dataset.append(data) | |
| if video_repeat > 0: | |
| for _ in range(video_repeat): | |
| for data in dataset: | |
| if data.get('type', 'image') == 'video': | |
| self.dataset.append(data) | |
| del dataset | |
| self.length = len(self.dataset) | |
| print(f"data scale: {self.length}") | |
| # TODO: enable bucket training | |
| self.enable_bucket = enable_bucket | |
| self.text_drop_ratio = text_drop_ratio | |
| self.enable_inpaint = enable_inpaint | |
| self.video_length_drop_start = video_length_drop_start | |
| self.video_length_drop_end = video_length_drop_end | |
| # Video params | |
| self.video_sample_stride = video_sample_stride | |
| self.video_sample_n_frames = video_sample_n_frames | |
| self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size) | |
| self.video_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(min(self.video_sample_size)), | |
| transforms.CenterCrop(self.video_sample_size), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
| ] | |
| ) | |
| # Image params | |
| self.image_sample_size = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size) | |
| self.image_transforms = transforms.Compose([ | |
| transforms.Resize(min(self.image_sample_size)), | |
| transforms.CenterCrop(self.image_sample_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5]) | |
| ]) | |
| self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size)) | |
| def get_batch(self, idx): | |
| data_info = self.dataset[idx % len(self.dataset)] | |
| video_id, text = data_info['file_path'], data_info['text'] | |
| if data_info.get('type', 'image')=='video': | |
| if self.data_root is None: | |
| video_dir = video_id | |
| else: | |
| video_dir = os.path.join(self.data_root, video_id) | |
| with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader: | |
| min_sample_n_frames = min( | |
| self.video_sample_n_frames, | |
| int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride) | |
| ) | |
| if min_sample_n_frames == 0: | |
| raise ValueError(f"No Frames in video.") | |
| video_length = int(self.video_length_drop_end * len(video_reader)) | |
| clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1) | |
| start_idx = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0 | |
| batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int) | |
| try: | |
| sample_args = (video_reader, batch_index) | |
| pixel_values = func_timeout( | |
| VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args | |
| ) | |
| resized_frames = [] | |
| for i in range(len(pixel_values)): | |
| frame = pixel_values[i] | |
| resized_frame = resize_frame(frame, self.larger_side_of_image_and_video) | |
| resized_frames.append(resized_frame) | |
| pixel_values = np.array(resized_frames) | |
| except FunctionTimedOut: | |
| raise ValueError(f"Read {idx} timeout.") | |
| except Exception as e: | |
| raise ValueError(f"Failed to extract frames from video. Error is {e}.") | |
| if not self.enable_bucket: | |
| pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() | |
| pixel_values = pixel_values / 255. | |
| del video_reader | |
| else: | |
| pixel_values = pixel_values | |
| if not self.enable_bucket: | |
| pixel_values = self.video_transforms(pixel_values) | |
| # Random use no text generation | |
| if random.random() < self.text_drop_ratio: | |
| text = '' | |
| control_video_id = data_info['control_file_path'] | |
| if self.data_root is None: | |
| control_video_id = control_video_id | |
| else: | |
| control_video_id = os.path.join(self.data_root, control_video_id) | |
| with VideoReader_contextmanager(control_video_id, num_threads=2) as control_video_reader: | |
| try: | |
| sample_args = (control_video_reader, batch_index) | |
| control_pixel_values = func_timeout( | |
| VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args | |
| ) | |
| resized_frames = [] | |
| for i in range(len(control_pixel_values)): | |
| frame = control_pixel_values[i] | |
| resized_frame = resize_frame(frame, self.larger_side_of_image_and_video) | |
| resized_frames.append(resized_frame) | |
| control_pixel_values = np.array(resized_frames) | |
| except FunctionTimedOut: | |
| raise ValueError(f"Read {idx} timeout.") | |
| except Exception as e: | |
| raise ValueError(f"Failed to extract frames from video. Error is {e}.") | |
| if not self.enable_bucket: | |
| control_pixel_values = torch.from_numpy(control_pixel_values).permute(0, 3, 1, 2).contiguous() | |
| control_pixel_values = control_pixel_values / 255. | |
| del control_video_reader | |
| else: | |
| control_pixel_values = control_pixel_values | |
| if not self.enable_bucket: | |
| control_pixel_values = self.video_transforms(control_pixel_values) | |
| return pixel_values, control_pixel_values, text, "video" | |
| else: | |
| image_path, text = data_info['file_path'], data_info['text'] | |
| if self.data_root is not None: | |
| image_path = os.path.join(self.data_root, image_path) | |
| image = Image.open(image_path).convert('RGB') | |
| if not self.enable_bucket: | |
| image = self.image_transforms(image).unsqueeze(0) | |
| else: | |
| image = np.expand_dims(np.array(image), 0) | |
| if random.random() < self.text_drop_ratio: | |
| text = '' | |
| control_image_id = data_info['control_file_path'] | |
| if self.data_root is None: | |
| control_image_id = control_image_id | |
| else: | |
| control_image_id = os.path.join(self.data_root, control_image_id) | |
| control_image = Image.open(control_image_id).convert('RGB') | |
| if not self.enable_bucket: | |
| control_image = self.image_transforms(control_image).unsqueeze(0) | |
| else: | |
| control_image = np.expand_dims(np.array(control_image), 0) | |
| return image, control_image, text, 'image' | |
| def __len__(self): | |
| return self.length | |
| def __getitem__(self, idx): | |
| data_info = self.dataset[idx % len(self.dataset)] | |
| data_type = data_info.get('type', 'image') | |
| while True: | |
| sample = {} | |
| try: | |
| data_info_local = self.dataset[idx % len(self.dataset)] | |
| data_type_local = data_info_local.get('type', 'image') | |
| if data_type_local != data_type: | |
| raise ValueError("data_type_local != data_type") | |
| pixel_values, control_pixel_values, name, data_type = self.get_batch(idx) | |
| sample["pixel_values"] = pixel_values | |
| sample["control_pixel_values"] = control_pixel_values | |
| sample["text"] = name | |
| sample["data_type"] = data_type | |
| sample["idx"] = idx | |
| if len(sample) > 0: | |
| break | |
| except Exception as e: | |
| print(e, self.dataset[idx % len(self.dataset)]) | |
| idx = random.randint(0, self.length-1) | |
| if self.enable_inpaint and not self.enable_bucket: | |
| mask = get_random_mask(pixel_values.size()) | |
| mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask | |
| sample["mask_pixel_values"] = mask_pixel_values | |
| sample["mask"] = mask | |
| clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous() | |
| clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255 | |
| sample["clip_pixel_values"] = clip_pixel_values | |
| ref_pixel_values = sample["pixel_values"][0].unsqueeze(0) | |
| if (mask == 1).all(): | |
| ref_pixel_values = torch.ones_like(ref_pixel_values) * -1 | |
| sample["ref_pixel_values"] = ref_pixel_values | |
| return sample | |