OmniTry / app.py
fengyutong's picture
Update app.py
b94267e verified
import gradio as gr
import spaces
import torch
import diffusers
import transformers
import copy
import random
import numpy as np
import torchvision.transforms as T
import math
import os
import peft
from peft import LoraConfig
from safetensors import safe_open
from omegaconf import OmegaConf
from omnitry.models.transformer_flux import FluxTransformer2DModel
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry")
device = torch.device('cuda:0')
weight_dtype = torch.bfloat16
args = OmegaConf.load('configs/omnitry_v1_unified.yaml')
# init model
transformer = FluxTransformer2DModel.from_pretrained('black-forest-labs/FLUX.1-Fill-dev', subfolder='transformer').requires_grad_(False).to(device, dtype=weight_dtype)
pipeline = FluxFillPipeline.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
transformer=transformer,
torch_dtype=weight_dtype
).to(device)
# insert LoRA
lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
init_lora_weights="gaussian",
target_modules=[
'x_embedder',
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
]
)
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
transformer.add_adapter(lora_config, adapter_name='garment_lora')
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
lora_weights = {k: f.get_tensor(k) for k in f.keys()}
transformer.load_state_dict(lora_weights, strict=False)
# hack lora forward
def create_hacked_forward(module):
def lora_forward(self, active_adapter, x, *args, **kwargs):
result = self.base_layer(x, *args, **kwargs)
if active_adapter is not None:
torch_result_dtype = result.dtype
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
x = x.to(lora_A.weight.dtype)
result = result + lora_B(lora_A(dropout(x))) * scaling
return result
def hacked_lora_forward(self, x, *args, **kwargs):
return torch.cat((
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
), dim=0)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@spaces.GPU
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
# set seed
if seed == -1:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
# resize model
max_area = 1024 * 1024
oW = person_image.width
oH = person_image.height
ratio = math.sqrt(max_area / (oW * oH))
ratio = min(1, ratio)
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
transform = T.Compose([
T.Resize((tH, tW)),
T.ToTensor(),
])
person_image = transform(person_image)
# resize and padding garment
ratio = min(tW / object_image.width, tH / object_image.height)
transform = T.Compose([
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
T.ToTensor(),
])
object_image_padded = torch.ones_like(person_image)
object_image = transform(object_image)
new_h, new_w = object_image.shape[1], object_image.shape[2]
min_x = (tW - new_w) // 2
min_y = (tH - new_h) // 2
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image
# prepare prompts & conditions
prompts = [args.object_map[object_class]] * 2
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
mask = torch.zeros_like(img_cond).to(img_cond)
with torch.no_grad():
img = pipeline(
prompt=prompts,
height=tH,
width=tW,
img_cond=img_cond,
mask=mask,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator(device).manual_seed(seed),
).images[0]
return img
if __name__ == '__main__':
with gr.Blocks() as demo:
gr.Markdown('# Demo of OmniTry')
with gr.Row():
with gr.Column():
person_image = gr.Image(type="pil", label="Person Image", height=800)
run_button = gr.Button(value="Submit", variant='primary')
with gr.Column():
object_image = gr.Image(type="pil", label="Object Image", height=800)
object_class = gr.Dropdown(label='Object Class', choices=args.object_map.keys())
with gr.Column():
image_out = gr.Image(type="pil", label="Output", height=800)
with gr.Accordion("Advanced ⚙️", open=False):
guidance_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30, step=0.1)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="Seed", value=-1, precision=0)
with gr.Row():
gr.Examples(
examples=[
[
'./demo_example/person_top_cloth.jpg',
'./demo_example/object_top_cloth.jpg',
'top clothes',
],
[
'./demo_example/person_bottom_cloth.jpg',
'./demo_example/object_bottom_cloth.jpg',
'bottom clothes',
],
[
'./demo_example/person_dress.jpg',
'./demo_example/object_dress.jpg',
'dress',
],
[
'./demo_example/person_shoes.jpg',
'./demo_example/object_shoes.jpg',
'shoe',
],
[
'./demo_example/person_earrings.jpg',
'./demo_example/object_earrings.jpg',
'earrings',
],
[
'./demo_example/person_bracelet.jpg',
'./demo_example/object_bracelet.jpg',
'bracelet',
],
[
'./demo_example/person_necklace.jpg',
'./demo_example/object_necklace.jpg',
'necklace',
],
[
'./demo_example/person_ring.jpg',
'./demo_example/object_ring.jpg',
'ring',
],
[
'./demo_example/person_sunglasses.jpg',
'./demo_example/object_sunglasses.jpg',
'sunglasses',
],
[
'./demo_example/person_glasses.jpg',
'./demo_example/object_glasses.jpg',
'glasses',
],
[
'./demo_example/person_belt.jpg',
'./demo_example/object_belt.jpg',
'belt',
],
[
'./demo_example/person_bag.jpg',
'./demo_example/object_bag.jpg',
'bag',
],
[
'./demo_example/person_hat.jpg',
'./demo_example/object_hat.jpg',
'hat',
],
[
'./demo_example/person_tie.jpg',
'./demo_example/object_tie.jpg',
'tie',
],
[
'./demo_example/person_bowtie.jpg',
'./demo_example/object_bowtie.jpg',
'bow tie',
],
],
inputs=[person_image, object_image, object_class],
examples_per_page=100
)
run_button.click(generate, inputs=[person_image, object_image, object_class, steps, guidance_scale, seed], outputs=[image_out])
demo.launch(server_name="0.0.0.0")