Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from .sd_unet import SDUNet | |
| from .sdxl_unet import SDXLUNet | |
| from .sd_text_encoder import SDTextEncoder | |
| from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 | |
| from .sd3_dit import SD3DiT | |
| from .flux_dit import FluxDiT | |
| from .hunyuan_dit import HunyuanDiT | |
| from .cog_dit import CogDiT | |
| from .hunyuan_video_dit import HunyuanVideoDiT | |
| from .wan_video_dit import WanModel | |
| class LoRAFromCivitai: | |
| def __init__(self): | |
| self.supported_model_classes = [] | |
| self.lora_prefix = [] | |
| self.renamed_lora_prefix = {} | |
| self.special_keys = {} | |
| def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
| for key in state_dict: | |
| if ".lora_up" in key: | |
| return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha) | |
| return self.convert_state_dict_AB(state_dict, lora_prefix, alpha) | |
| def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
| renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "") | |
| state_dict_ = {} | |
| for key in state_dict: | |
| if ".lora_up" not in key: | |
| continue | |
| if not key.startswith(lora_prefix): | |
| continue | |
| weight_up = state_dict[key].to(device="cuda", dtype=torch.float16) | |
| weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32) | |
| weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32) | |
| lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| else: | |
| lora_weight = alpha * torch.mm(weight_up, weight_down) | |
| target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight" | |
| for special_key in self.special_keys: | |
| target_name = target_name.replace(special_key, self.special_keys[special_key]) | |
| state_dict_[target_name] = lora_weight.cpu() | |
| return state_dict_ | |
| def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16): | |
| state_dict_ = {} | |
| for key in state_dict: | |
| if ".lora_B." not in key: | |
| continue | |
| if not key.startswith(lora_prefix): | |
| continue | |
| weight_up = state_dict[key].to(device=device, dtype=torch_dtype) | |
| weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2) | |
| weight_down = weight_down.squeeze(3).squeeze(2) | |
| lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| else: | |
| lora_weight = alpha * torch.mm(weight_up, weight_down) | |
| keys = key.split(".") | |
| keys.pop(keys.index("lora_B")) | |
| target_name = ".".join(keys) | |
| target_name = target_name[len(lora_prefix):] | |
| state_dict_[target_name] = lora_weight.cpu() | |
| return state_dict_ | |
| def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None): | |
| state_dict_model = model.state_dict() | |
| state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha) | |
| if model_resource == "diffusers": | |
| state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora) | |
| elif model_resource == "civitai": | |
| state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora) | |
| if isinstance(state_dict_lora, tuple): | |
| state_dict_lora = state_dict_lora[0] | |
| if len(state_dict_lora) > 0: | |
| print(f" {len(state_dict_lora)} tensors are updated.") | |
| for name in state_dict_lora: | |
| fp8=False | |
| if state_dict_model[name].dtype == torch.float8_e4m3fn: | |
| state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype) | |
| fp8=True | |
| state_dict_model[name] += state_dict_lora[name].to( | |
| dtype=state_dict_model[name].dtype, device=state_dict_model[name].device) | |
| if fp8: | |
| state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn) | |
| model.load_state_dict(state_dict_model) | |
| def match(self, model, state_dict_lora): | |
| for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes): | |
| if not isinstance(model, model_class): | |
| continue | |
| state_dict_model = model.state_dict() | |
| for model_resource in ["diffusers", "civitai"]: | |
| try: | |
| state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0) | |
| converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \ | |
| else model.__class__.state_dict_converter().from_civitai | |
| state_dict_lora_ = converter_fn(state_dict_lora_) | |
| if isinstance(state_dict_lora_, tuple): | |
| state_dict_lora_ = state_dict_lora_[0] | |
| if len(state_dict_lora_) == 0: | |
| continue | |
| for name in state_dict_lora_: | |
| if name not in state_dict_model: | |
| break | |
| else: | |
| return lora_prefix, model_resource | |
| except: | |
| pass | |
| return None | |
| class SDLoRAFromCivitai(LoRAFromCivitai): | |
| def __init__(self): | |
| super().__init__() | |
| self.supported_model_classes = [SDUNet, SDTextEncoder] | |
| self.lora_prefix = ["lora_unet_", "lora_te_"] | |
| self.special_keys = { | |
| "down.blocks": "down_blocks", | |
| "up.blocks": "up_blocks", | |
| "mid.block": "mid_block", | |
| "proj.in": "proj_in", | |
| "proj.out": "proj_out", | |
| "transformer.blocks": "transformer_blocks", | |
| "to.q": "to_q", | |
| "to.k": "to_k", | |
| "to.v": "to_v", | |
| "to.out": "to_out", | |
| "text.model": "text_model", | |
| "self.attn.q.proj": "self_attn.q_proj", | |
| "self.attn.k.proj": "self_attn.k_proj", | |
| "self.attn.v.proj": "self_attn.v_proj", | |
| "self.attn.out.proj": "self_attn.out_proj", | |
| "input.blocks": "model.diffusion_model.input_blocks", | |
| "middle.block": "model.diffusion_model.middle_block", | |
| "output.blocks": "model.diffusion_model.output_blocks", | |
| } | |
| class SDXLLoRAFromCivitai(LoRAFromCivitai): | |
| def __init__(self): | |
| super().__init__() | |
| self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2] | |
| self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"] | |
| self.renamed_lora_prefix = {"lora_te2_": "2"} | |
| self.special_keys = { | |
| "down.blocks": "down_blocks", | |
| "up.blocks": "up_blocks", | |
| "mid.block": "mid_block", | |
| "proj.in": "proj_in", | |
| "proj.out": "proj_out", | |
| "transformer.blocks": "transformer_blocks", | |
| "to.q": "to_q", | |
| "to.k": "to_k", | |
| "to.v": "to_v", | |
| "to.out": "to_out", | |
| "text.model": "conditioner.embedders.0.transformer.text_model", | |
| "self.attn.q.proj": "self_attn.q_proj", | |
| "self.attn.k.proj": "self_attn.k_proj", | |
| "self.attn.v.proj": "self_attn.v_proj", | |
| "self.attn.out.proj": "self_attn.out_proj", | |
| "input.blocks": "model.diffusion_model.input_blocks", | |
| "middle.block": "model.diffusion_model.middle_block", | |
| "output.blocks": "model.diffusion_model.output_blocks", | |
| "2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers" | |
| } | |
| class FluxLoRAFromCivitai(LoRAFromCivitai): | |
| def __init__(self): | |
| super().__init__() | |
| self.supported_model_classes = [FluxDiT, FluxDiT] | |
| self.lora_prefix = ["lora_unet_", "transformer."] | |
| self.renamed_lora_prefix = {} | |
| self.special_keys = { | |
| "single.blocks": "single_blocks", | |
| "double.blocks": "double_blocks", | |
| "img.attn": "img_attn", | |
| "img.mlp": "img_mlp", | |
| "img.mod": "img_mod", | |
| "txt.attn": "txt_attn", | |
| "txt.mlp": "txt_mlp", | |
| "txt.mod": "txt_mod", | |
| } | |
| class GeneralLoRAFromPeft: | |
| def __init__(self): | |
| self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT, FluxDiT, CogDiT, WanModel] | |
| def get_name_dict(self, lora_state_dict): | |
| lora_name_dict = {} | |
| for key in lora_state_dict: | |
| if ".lora_B." not in key: | |
| continue | |
| keys = key.split(".") | |
| if len(keys) > keys.index("lora_B") + 2: | |
| keys.pop(keys.index("lora_B") + 1) | |
| keys.pop(keys.index("lora_B")) | |
| if keys[0] == "diffusion_model": | |
| keys.pop(0) | |
| target_name = ".".join(keys) | |
| lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A.")) | |
| return lora_name_dict | |
| def match(self, model: torch.nn.Module, state_dict_lora): | |
| lora_name_dict = self.get_name_dict(state_dict_lora) | |
| model_name_dict = {name: None for name, _ in model.named_parameters()} | |
| matched_num = sum([i in model_name_dict for i in lora_name_dict]) | |
| if matched_num == len(lora_name_dict): | |
| return "", "" | |
| else: | |
| return None | |
| def fetch_device_and_dtype(self, state_dict): | |
| device, dtype = None, None | |
| for name, param in state_dict.items(): | |
| device, dtype = param.device, param.dtype | |
| break | |
| computation_device = device | |
| computation_dtype = dtype | |
| if computation_device == torch.device("cpu"): | |
| if torch.cuda.is_available(): | |
| computation_device = torch.device("cuda") | |
| if computation_dtype == torch.float8_e4m3fn: | |
| computation_dtype = torch.float32 | |
| return device, dtype, computation_device, computation_dtype | |
| def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""): | |
| state_dict_model = model.state_dict() | |
| device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model) | |
| lora_name_dict = self.get_name_dict(state_dict_lora) | |
| for name in lora_name_dict: | |
| weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype) | |
| weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype) | |
| # print(name, weight_up.shape, weight_down.shape, flush=True) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2) | |
| weight_down = weight_down.squeeze(3).squeeze(2) | |
| weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| #* Yuxuan: 增加3D卷积 | |
| elif len(weight_up.shape) == 5: | |
| weight_up = weight_up.squeeze(4).squeeze(3).squeeze(2) | |
| _, down_1, down_2, down_3, down_4 = weight_down.shape | |
| weight_down = weight_down.view(weight_down.shape[0], -1) | |
| weight_lora = alpha * torch.mm(weight_up, weight_down) | |
| weight_lora = weight_lora.view(weight_lora.shape[0], down_1, down_2, down_3, down_4) | |
| else: | |
| # print(name, alpha, weight_up.shape, weight_down.shape) | |
| weight_lora = alpha * torch.mm(weight_up, weight_down) | |
| weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype) | |
| weight_patched = weight_model + weight_lora | |
| state_dict_model[name] = weight_patched.to(device=device, dtype=dtype) | |
| print(f" {len(lora_name_dict)} tensors are updated.") | |
| model.load_state_dict(state_dict_model) | |
| class HunyuanVideoLoRAFromCivitai(LoRAFromCivitai): | |
| def __init__(self): | |
| super().__init__() | |
| self.supported_model_classes = [HunyuanVideoDiT, HunyuanVideoDiT] | |
| self.lora_prefix = ["diffusion_model.", "transformer."] | |
| self.special_keys = {} | |
| class FluxLoRAConverter: | |
| def __init__(self): | |
| pass | |
| def align_to_opensource_format(state_dict, alpha=1.0): | |
| prefix_rename_dict = { | |
| "single_blocks": "lora_unet_single_blocks", | |
| "blocks": "lora_unet_double_blocks", | |
| } | |
| middle_rename_dict = { | |
| "norm.linear": "modulation_lin", | |
| "to_qkv_mlp": "linear1", | |
| "proj_out": "linear2", | |
| "norm1_a.linear": "img_mod_lin", | |
| "norm1_b.linear": "txt_mod_lin", | |
| "attn.a_to_qkv": "img_attn_qkv", | |
| "attn.b_to_qkv": "txt_attn_qkv", | |
| "attn.a_to_out": "img_attn_proj", | |
| "attn.b_to_out": "txt_attn_proj", | |
| "ff_a.0": "img_mlp_0", | |
| "ff_a.2": "img_mlp_2", | |
| "ff_b.0": "txt_mlp_0", | |
| "ff_b.2": "txt_mlp_2", | |
| } | |
| suffix_rename_dict = { | |
| "lora_B.weight": "lora_up.weight", | |
| "lora_A.weight": "lora_down.weight", | |
| } | |
| state_dict_ = {} | |
| for name, param in state_dict.items(): | |
| names = name.split(".") | |
| if names[-2] != "lora_A" and names[-2] != "lora_B": | |
| names.pop(-2) | |
| prefix = names[0] | |
| middle = ".".join(names[2:-2]) | |
| suffix = ".".join(names[-2:]) | |
| block_id = names[1] | |
| if middle not in middle_rename_dict: | |
| continue | |
| rename = prefix_rename_dict[prefix] + "_" + block_id + "_" + middle_rename_dict[middle] + "." + suffix_rename_dict[suffix] | |
| state_dict_[rename] = param | |
| if rename.endswith("lora_up.weight"): | |
| state_dict_[rename.replace("lora_up.weight", "alpha")] = torch.tensor((alpha,))[0] | |
| return state_dict_ | |
| def align_to_diffsynth_format(state_dict): | |
| rename_dict = { | |
| "lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight", | |
| } | |
| def guess_block_id(name): | |
| names = name.split("_") | |
| for i in names: | |
| if i.isdigit(): | |
| return i, name.replace(f"_{i}_", "_blockid_") | |
| return None, None | |
| state_dict_ = {} | |
| for name, param in state_dict.items(): | |
| block_id, source_name = guess_block_id(name) | |
| if source_name in rename_dict: | |
| target_name = rename_dict[source_name] | |
| target_name = target_name.replace(".blockid.", f".{block_id}.") | |
| state_dict_[target_name] = param | |
| else: | |
| state_dict_[name] = param | |
| return state_dict_ | |
| class WanLoRAConverter: | |
| def __init__(self): | |
| pass | |
| def align_to_opensource_format(state_dict, **kwargs): | |
| state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()} | |
| return state_dict | |
| def align_to_diffsynth_format(state_dict, **kwargs): | |
| state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()} | |
| return state_dict | |
| def get_lora_loaders(): | |
| return [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), FluxLoRAFromCivitai(), HunyuanVideoLoRAFromCivitai(), GeneralLoRAFromPeft()] | |