Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List, Optional | |
| from PIL import Image | |
| import torch | |
| from transformers import AutoProcessor, AutoModel | |
| from safetensors.torch import load_file | |
| import os | |
| from typing import Union, List | |
| from .config import MODEL_PATHS | |
| class MLP(torch.nn.Module): | |
| def __init__(self, input_size: int, xcol: str = "emb", ycol: str = "avg_rating"): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.xcol = xcol | |
| self.ycol = ycol | |
| self.layers = torch.nn.Sequential( | |
| torch.nn.Linear(self.input_size, 1024), | |
| #torch.nn.ReLU(), | |
| torch.nn.Dropout(0.2), | |
| torch.nn.Linear(1024, 128), | |
| #torch.nn.ReLU(), | |
| torch.nn.Dropout(0.2), | |
| torch.nn.Linear(128, 64), | |
| #torch.nn.ReLU(), | |
| torch.nn.Dropout(0.1), | |
| torch.nn.Linear(64, 16), | |
| #torch.nn.ReLU(), | |
| torch.nn.Linear(16, 1), | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.layers(x) | |
| def training_step(self, batch: dict, batch_idx: int) -> torch.Tensor: | |
| x = batch[self.xcol] | |
| y = batch[self.ycol].reshape(-1, 1) | |
| x_hat = self.layers(x) | |
| loss = torch.nn.functional.mse_loss(x_hat, y) | |
| return loss | |
| def validation_step(self, batch: dict, batch_idx: int) -> torch.Tensor: | |
| x = batch[self.xcol] | |
| y = batch[self.ycol].reshape(-1, 1) | |
| x_hat = self.layers(x) | |
| loss = torch.nn.functional.mse_loss(x_hat, y) | |
| return loss | |
| def configure_optimizers(self) -> torch.optim.Optimizer: | |
| return torch.optim.Adam(self.parameters(), lr=1e-3) | |
| class AestheticScore(torch.nn.Module): | |
| def __init__(self, device: torch.device, path: str = MODEL_PATHS): | |
| super().__init__() | |
| self.device = device | |
| self.aes_model_path = path.get("aesthetic_predictor") | |
| # Load the MLP model | |
| self.model = MLP(768) | |
| try: | |
| if self.aes_model_path.endswith(".safetensors"): | |
| state_dict = load_file(self.aes_model_path) | |
| else: | |
| state_dict = torch.load(self.aes_model_path) | |
| self.model.load_state_dict(state_dict) | |
| except Exception as e: | |
| raise ValueError(f"Error loading model weights from {self.aes_model_path}: {e}") | |
| self.model.to(device) | |
| self.model.eval() | |
| # Load the CLIP model and processor | |
| clip_model_name = path.get('clip-large') | |
| self.model2 = AutoModel.from_pretrained(clip_model_name).eval().to(device) | |
| self.processor = AutoProcessor.from_pretrained(clip_model_name) | |
| def _calculate_score(self, image: torch.Tensor) -> float: | |
| """Calculate the aesthetic score for a single image. | |
| Args: | |
| image (torch.Tensor): The processed image tensor. | |
| Returns: | |
| float: The aesthetic score. | |
| """ | |
| with torch.no_grad(): | |
| # Get image embeddings | |
| image_embs = self.model2.get_image_features(image) | |
| image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) | |
| # Compute score | |
| score = self.model(image_embs).cpu().flatten().item() | |
| return score | |
| def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]: | |
| """Score the images based on their aesthetic quality. | |
| Args: | |
| images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). | |
| Returns: | |
| List[float]: List of scores for the images. | |
| """ | |
| try: | |
| if isinstance(images, (str, Image.Image)): | |
| # Single image | |
| if isinstance(images, str): | |
| pil_image = Image.open(images) | |
| else: | |
| pil_image = images | |
| # Prepare image inputs | |
| image_inputs = self.processor( | |
| images=pil_image, | |
| padding=True, | |
| truncation=True, | |
| max_length=77, | |
| return_tensors="pt", | |
| ).to(self.device) | |
| return [self._calculate_score(image_inputs["pixel_values"])] | |
| elif isinstance(images, list): | |
| # Multiple images | |
| scores = [] | |
| for one_image in images: | |
| if isinstance(one_image, str): | |
| pil_image = Image.open(one_image) | |
| elif isinstance(one_image, Image.Image): | |
| pil_image = one_image | |
| else: | |
| raise TypeError("The type of parameter images is illegal.") | |
| # Prepare image inputs | |
| image_inputs = self.processor( | |
| images=pil_image, | |
| padding=True, | |
| truncation=True, | |
| max_length=77, | |
| return_tensors="pt", | |
| ).to(self.device) | |
| scores.append(self._calculate_score(image_inputs["pixel_values"])) | |
| return scores | |
| else: | |
| raise TypeError("The type of parameter images is illegal.") | |
| except Exception as e: | |
| raise RuntimeError(f"Error in scoring images: {e}") | |