Spaces:
Sleeping
Sleeping
import streamlit as st | |
import google.generativeai as genai | |
# Header for the Streamlit app | |
st.header("Resume Maker") | |
# Retrieve the API key from Streamlit secrets | |
GOOGLE_API_KEY = st.secrets["GEMINI_API_KEY"] | |
# Configure the Google Generative AI API with your API key | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# Text input for user prompt | |
user_input_resume = st.text_area("Enter your Resume", height = 100) | |
user_input_job_description = st.text_area("Enter JD", height = 100) | |
prompt = f""" | |
Imagine you are an ATS-compliant Resume Creator. Use my current resume: | |
{user_input_resume} and the new job description (JD): | |
{user_input_job_description} to create a tailored resume that incorporates | |
keywords from the JD and paraphrases them appropriately. | |
Start by creating a professional summary. | |
Then, list six main skill categories and organize all the relevant keywords | |
under each category in a comma-separated format. | |
Finally, update the 'Current Experience' section by including keywords from the JD. | |
""" | |
# Button to submit the prompt | |
if st.button("Generate"): | |
if user_input_resume: | |
# Initialize the model | |
model = genai.GenerativeModel('gemini-pro') # Assuming this is the correct model | |
try: | |
# Generate content based on the user's input | |
response = model.generate_content(prompt) | |
# Display the generated content | |
st.write("Generated Content:") | |
st.write(response.text) | |
except Exception as e: | |
st.error(f"Error: {e}") | |
else: | |
st.error("Please enter a prompt.") | |