Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import importlib | |
import numpy as np | |
from inspect import isfunction | |
import torch | |
def shape_to_str(x): | |
shape_str = "x".join([str(x) for x in x.shape]) | |
return shape_str | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise ValueError('Boolean value expected.') | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def instantiate_from_config(config): | |
if not "target" in config: | |
if config == '__is_first_stage__': | |
return None | |
elif config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): | |
""" Shifts src_tf dim to dest dim | |
i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c) | |
""" | |
n_dims = len(x.shape) | |
if src_dim < 0: | |
src_dim = n_dims + src_dim | |
if dest_dim < 0: | |
dest_dim = n_dims + dest_dim | |
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims | |
dims = list(range(n_dims)) | |
del dims[src_dim] | |
permutation = [] | |
ctr = 0 | |
for i in range(n_dims): | |
if i == dest_dim: | |
permutation.append(src_dim) | |
else: | |
permutation.append(dims[ctr]) | |
ctr += 1 | |
x = x.permute(permutation) | |
if make_contiguous: | |
x = x.contiguous() | |
return x | |
def torch_to_np(x): | |
sample = x.detach().cpu() | |
sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8) | |
if sample.dim() == 5: | |
sample = sample.permute(0, 2, 3, 4, 1) | |
else: | |
sample = sample.permute(0, 2, 3, 1) | |
sample = sample.contiguous().numpy() | |
return sample | |
def np_to_torch_video(x): | |
x = torch.tensor(x).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w] | |
x = (x / 255 - 0.5) * 2 | |
return x | |
def load_npz_from_dir(data_dir): | |
data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] | |
data = np.concatenate(data, axis=0) | |
return data | |
def load_npz_from_paths(data_paths): | |
data = [np.load(data_path)['arr_0'] for data_path in data_paths] | |
data = np.concatenate(data, axis=0) | |
return data | |
def ismap(x): | |
if not isinstance(x, torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] > 3) | |
def isimage(x): | |
if not isinstance(x,torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def mean_flat(tensor): | |
""" | |
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def count_params(model, verbose=False): | |
total_params = sum(p.numel() for p in model.parameters()) | |
if verbose: | |
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") | |
return total_params | |
def check_istarget(name, para_list): | |
""" | |
name: full name of source para | |
para_list: partial name of target para | |
""" | |
istarget=False | |
for para in para_list: | |
if para in name: | |
return True | |
return istarget |