Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.io as pio
|
4 |
+
import gradio as gr
|
5 |
+
from app_clustering import clustering
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
if os.getenv("HUGGINGFACE_HUB_CACHE") is None:
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
api_key = os.getenv("youtube_api_key")
|
12 |
+
|
13 |
+
RANDOM_STATE = 333
|
14 |
+
|
15 |
+
|
16 |
+
def convert_graph_to_html(graph, full_html=False):
|
17 |
+
return pio.to_html(graph, full_html=full_html) if graph else None
|
18 |
+
|
19 |
+
|
20 |
+
def process_video(url):
|
21 |
+
video_details = None
|
22 |
+
sentiment_daily_graph = None
|
23 |
+
sentiment_count = None
|
24 |
+
sankey_graph = None
|
25 |
+
scores_graph = None
|
26 |
+
|
27 |
+
if url:
|
28 |
+
video_details = clustering.get_youtube_video_details(url, api_key)
|
29 |
+
comments_df = clustering.get_youtube_comments(api_key, url)
|
30 |
+
comments_df = clustering.add_normalized_embeddings_to_dataframe(comments_df, "comment")
|
31 |
+
comments_df["published_at"] = pd.to_datetime(comments_df["published_at"]).dt.date
|
32 |
+
comments_df = clustering.classify_sentiment_df(comments_df)
|
33 |
+
|
34 |
+
# Sentiment count
|
35 |
+
sentiment_count = comments_df["sentimiento"].value_counts().to_dict()
|
36 |
+
|
37 |
+
# Plot daily sentiment
|
38 |
+
sentiment_daily_graph = clustering.plot_sentiment_daily(comments_df)
|
39 |
+
sentiment_daily_graph_html = convert_graph_to_html(sentiment_daily_graph)
|
40 |
+
|
41 |
+
umap_df, min_eps, max_eps = clustering.transform_embeddings(comments_df, embeddings_col="embeddings")
|
42 |
+
total = comments_df.shape[0]
|
43 |
+
min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
|
44 |
+
|
45 |
+
cluster_assignments, cluster_counts, calinski_harabasz_scores, silhouette_scores, most_similar_comments, umap_df = clustering.perform_clustering(
|
46 |
+
umap_df, min_eps, max_eps, n=10, embeddings_col="embeddings"
|
47 |
+
)
|
48 |
+
|
49 |
+
# Build Sankey data and plot
|
50 |
+
labels, source, target, values, comments = clustering.build_sankey_data(
|
51 |
+
cluster_assignments, cluster_counts, most_similar_comments, min_items_by_cluster=min_items_by_cluster
|
52 |
+
)
|
53 |
+
sankey_graph = clustering.plot_sankey(labels, source, target, values, comments, height=1000, width=1200)
|
54 |
+
sankey_graph_html = convert_graph_to_html(sankey_graph)
|
55 |
+
|
56 |
+
# Plot clustering metrics
|
57 |
+
scores_graph, _ = clustering.plot_clustering_metric(silhouette_scores, calinski_harabasz_scores)
|
58 |
+
scores_graph_html = convert_graph_to_html(scores_graph)
|
59 |
+
|
60 |
+
return video_details, sentiment_daily_graph_html, sentiment_count, sankey_graph_html, scores_graph_html
|
61 |
+
|
62 |
+
|
63 |
+
# Gradio Interface
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=process_video,
|
66 |
+
inputs=gr.inputs.Textbox(label="YouTube Video URL", placeholder="Ingresa la URL del video..."),
|
67 |
+
outputs=[
|
68 |
+
gr.outputs.JSON(label="Video Details"),
|
69 |
+
gr.outputs.HTML(label="Sentiment Daily Graph"),
|
70 |
+
gr.outputs.JSON(label="Sentiment Count"),
|
71 |
+
gr.outputs.HTML(label="Sankey Graph"),
|
72 |
+
gr.outputs.HTML(label="Clustering Scores Graph")
|
73 |
+
],
|
74 |
+
title="YouTube Video Sentiment Analysis",
|
75 |
+
description="Ingresa la URL de un video de YouTube para analizar los comentarios y visualizar los resultados."
|
76 |
+
)
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
iface.launch()
|