|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .attention import CrossAttention, FeedForward, apply_rotary_emb, precompute_freqs_cis |
|
|
|
from einops import rearrange, repeat |
|
import math |
|
|
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
class TemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads = 8, |
|
num_transformer_block = 2, |
|
num_attention_blocks = 2, |
|
norm_num_groups = 32, |
|
temporal_max_len = 32, |
|
zero_initialize = True, |
|
pos_embedding_type = "ape", |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads, |
|
num_layers=num_transformer_block, |
|
num_attention_blocks=num_attention_blocks, |
|
norm_num_groups=norm_num_groups, |
|
temporal_max_len=temporal_max_len, |
|
pos_embedding_type=pos_embedding_type, |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
def forward(self, input_tensor, encoder_hidden_states, attention_mask=None): |
|
hidden_states = input_tensor |
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
num_layers, |
|
num_attention_blocks = 2, |
|
norm_num_groups = 32, |
|
temporal_max_len = 32, |
|
pos_embedding_type = "ape", |
|
): |
|
super().__init__() |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
num_attention_blocks=num_attention_blocks, |
|
temporal_max_len=temporal_max_len, |
|
pos_embedding_type=pos_embedding_type, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
|
|
batch, channel, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim).contiguous() |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, attention_mask=attention_mask) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return output |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
num_attention_blocks = 2, |
|
temporal_max_len = 32, |
|
pos_embedding_type = "ape", |
|
): |
|
super().__init__() |
|
|
|
self.attention_blocks = nn.ModuleList( |
|
[ |
|
TemporalAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
temporal_max_len=temporal_max_len, |
|
pos_embedding_type=pos_embedding_type, |
|
) |
|
for i in range(num_attention_blocks) |
|
] |
|
) |
|
self.norms = nn.ModuleList( |
|
[ |
|
nn.LayerNorm(dim) |
|
for i in range(num_attention_blocks) |
|
] |
|
) |
|
|
|
self.ff = FeedForward(dim, dropout=0.0, activation_fn="geglu") |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
for attention_block, norm in zip(self.attention_blocks, self.norms): |
|
norm_hidden_states = norm(hidden_states) |
|
hidden_states = attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
video_length=video_length, |
|
attention_mask=attention_mask, |
|
) + hidden_states |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout = 0., |
|
max_len = 32 |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1)].to(x.dtype) |
|
return self.dropout(x) |
|
|
|
class TemporalAttention(CrossAttention): |
|
def __init__( |
|
self, |
|
temporal_max_len = 32, |
|
pos_embedding_type = "ape", |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.pos_embedding_type = pos_embedding_type |
|
self._use_memory_efficient_attention_xformers = True |
|
|
|
self.pos_encoder = None |
|
self.freqs_cis = None |
|
if self.pos_embedding_type == "ape": |
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
dropout=0., |
|
max_len=temporal_max_len |
|
) |
|
|
|
elif self.pos_embedding_type == "rope": |
|
self.freqs_cis = precompute_freqs_cis( |
|
kwargs["query_dim"], |
|
temporal_max_len |
|
) |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
if self.freqs_cis is not None: |
|
seq_len = query.shape[1] |
|
freqs_cis = self.freqs_cis[:seq_len].to(query.device) |
|
query, key = apply_rotary_emb(query, key, freqs_cis) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
use_memory_efficient = self._use_memory_efficient_attention_xformers |
|
if use_memory_efficient and (dim // self.heads) % 8 != 0: |
|
|
|
use_memory_efficient = False |
|
|
|
|
|
if use_memory_efficient: |
|
query = self.reshape_heads_to_4d(query) |
|
key = self.reshape_heads_to_4d(key) |
|
value = self.reshape_heads_to_4d(value) |
|
|
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
query = self.reshape_heads_to_batch_dim(query) |
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
|
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |