|
import streamlit as st
|
|
|
|
def bert_intro():
|
|
st.title("Topic Modeling with BERT")
|
|
st.markdown("BERT (BERTopic): Explanation of the advanced NLP technique used for analyzing the data, and its application in this project.")
|
|
|
|
st.header("Process Flow: Step-by-step breakdown of the analysis process, from data gathering to insights extraction.")
|
|
|
|
def youth_classification():
|
|
st.title("Youth Classification")
|
|
|
|
def sentiment_analysis():
|
|
st.title("Sentiment Analysis")
|
|
|
|
def bert_topic_modeling():
|
|
st.title("Topic Modeling")
|
|
|
|
sidebar_pages = ["Introduction", "Youth Classification", "Sentiment Analysis", "Topic Modeling"]
|
|
def main():
|
|
st.sidebar.title("Navigation")
|
|
page = st.sidebar.selectbox("Select page:", sidebar_pages)
|
|
|
|
if page == "Introduction":
|
|
bert_intro()
|
|
elif page == "Youth Classification":
|
|
youth_classification()
|
|
elif page == "Sentiment Analysis":
|
|
sentiment_analysis()
|
|
elif page == "Topic Modeling":
|
|
bert_topic_modeling()
|
|
|
|
if __name__ == "__main__":
|
|
main() |