Lawyer-ChatBot / app.py
Krishnachaitanya2004's picture
Rename document_chatbot.py to app.py
57e8713
raw
history blame
4.47 kB
# !pip install langchain
# !pip install sentence-transformers
# !pip install accelerate
# !pip install chromadb
# !pip install "unstructured[all-docs]"
from langchain.vectorstores import Chroma
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import torch
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
import streamlit as st
import os
def main_process(uploaded_file):
file_name = list(uploaded_file.keys())[0]
# Create a temporary directory
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
# Save the uploaded file to the temporary directory
temp_path = os.path.join(temp_dir, file_name)
with open(temp_path, "wb") as temp_file:
temp_file.write(uploaded_file[file_name])
# Process the uploaded file
loader = UnstructuredFileLoader(temp_path)
documents = loader.load()
for document in documents:
print(document.page_content)
# We cant load the whole pdf into the program so we split the pdf into chunks
# We use RecursiveCharacterTextSplitter to split the pdf into chunks
# Each chunk is 500 characters long and the chunks overlap by 200 characters (You can change this according to your needs)
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=400)
texts = text_splitter.split_documents(documents)
# We use SentenceTransformerEmbeddings to embed the text chunks
# Embeddings are used to find the similarity between the query and the text chunks
# We use multi-qa-mpnet-base-dot-v1 model to embed the text chunks
# We need to save the embeddings to disk so we use persist_directory to save the embeddings to disk
embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-mpnet-base-dot-v1")
persist_directory = "/content/chroma/"
# Chroma is used to store the embeddings
# We use from_documents to store the embeddings
# We use the persist_directory to save the embeddings to disk
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
# To save and load the saved vector db (if needed in the future)
# Persist the database to disk
# db.persist()
# db = Chroma(persist_directory="db", embedding_function=embeddings)
checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
# Initialize the tokenizer and base model for text generation
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
device_map="auto",
torch_dtype=torch.float32
)
pipe = pipeline(
'text2text-generation',
model = base_model,
tokenizer = tokenizer,
max_length = 512,
do_sample = True,
temperature = 0.3,
top_p= 0.95
)
# Initialize a local language model pipeline
local_llm = HuggingFacePipeline(pipeline=pipe)
# Create a RetrievalQA chain
qa_chain = RetrievalQA.from_chain_type(
llm=local_llm,
chain_type='stuff',
retriever=db.as_retriever(search_type="similarity", search_kwargs={"k": 2}),
return_source_documents=True,
)
return qa_chain
st.title("Document Chatbot")
st.write("Upload a pdf file to get started")
uploaded_file = st.file_uploader("Choose a file", type=["pdf"])
if uploaded_file is not None:
qa_chain = main_process(uploaded_file)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Get response from chatbot
with st.chat_message("assitant"):
response = qa_chain(prompt)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})