Spaces:
Build error
Build error
| import streamlit as st | |
| from langchain.agents.agent_types import AgentType | |
| from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| import pandas as pd | |
| st.set_page_config( | |
| page_title="AI Data Explorer", | |
| page_icon="π»", | |
| ) | |
| st.header("AI Data Explorer with Gemini API",divider="rainbow") | |
| api_key = st.sidebar.text_input("Enter your Gemini API key", type="password") | |
| # File uploader for CSV file | |
| uploaded_file = st.sidebar.file_uploader("Upload a CSV file", type="csv") | |
| # Function to create and return an agent | |
| def create_agent(api_key, df, llm): | |
| # Create the pandas agent with the DataFrame and LLM | |
| agent = create_pandas_dataframe_agent( | |
| llm, | |
| df, | |
| agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
| verbose=True, | |
| allow_dangerous_code=True | |
| ) | |
| return agent | |
| # Application description | |
| st.markdown(""" | |
| ## About this Application π€π | |
| This application allows you to explore and analyze your dataset using an AI-powered agent. | |
| You can upload a CSV file and provide your Gemini API key to create an agent capable of answering questions about your data. | |
| ### How to Use π οΈ | |
| 1. π Enter your Gemini API key in the sidebar. | |
| 2. π Upload a CSV file containing your dataset. | |
| 3. β Enter your query about the dataset in the input field provided. | |
| 4. π The AI agent will process your query and display the results. | |
| The AI agent leverages the power of a LangChain and large language model (LLM) to understand and analyze your data, providing insights and answers based on your questions. | |
| """) | |
| # Process the uploaded CSV file and create the agent | |
| if uploaded_file is not None and api_key: | |
| llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=api_key) | |
| df = pd.read_csv(uploaded_file) | |
| st.write("Uploaded CSV file:") | |
| st.dataframe(df) | |
| agent = create_agent(api_key, df, llm) | |
| # Input field for user query | |
| user_query = st.text_input("Enter your query about the dataset") | |
| # Process the user query and display the result | |
| if user_query: | |
| with st.spinner('Processing your query...'): | |
| try: | |
| result = agent.run(user_query) | |
| st.success("Query result:") | |
| result | |
| except Exception as e: | |
| st.error(f"Error processing query: {e}") | |
| else: | |
| st.write("Please enter your Gemini API key and upload a CSV file") |