Spaces:
Runtime error
Runtime error
import base64 | |
import collections | |
import os | |
import random | |
from typing import Dict, List, Union | |
import numpy as np | |
import torch | |
import tqdm | |
from torch.utils.data import Dataset | |
from TTS.tts.utils.data import prepare_data, prepare_stop_target, prepare_tensor | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.audio.numpy_transforms import compute_energy as calculate_energy | |
# to prevent too many open files error as suggested here | |
# https://github.com/pytorch/pytorch/issues/11201#issuecomment-421146936 | |
torch.multiprocessing.set_sharing_strategy("file_system") | |
def _parse_sample(item): | |
language_name = None | |
attn_file = None | |
if len(item) == 5: | |
text, wav_file, speaker_name, language_name, attn_file = item | |
elif len(item) == 4: | |
text, wav_file, speaker_name, language_name = item | |
elif len(item) == 3: | |
text, wav_file, speaker_name = item | |
else: | |
raise ValueError(" [!] Dataset cannot parse the sample.") | |
return text, wav_file, speaker_name, language_name, attn_file | |
def noise_augment_audio(wav): | |
return wav + (1.0 / 32768.0) * np.random.rand(*wav.shape) | |
def string2filename(string): | |
# generate a safe and reversible filename based on a string | |
filename = base64.urlsafe_b64encode(string.encode("utf-8")).decode("utf-8", "ignore") | |
return filename | |
class TTSDataset(Dataset): | |
def __init__( | |
self, | |
outputs_per_step: int = 1, | |
compute_linear_spec: bool = False, | |
ap: AudioProcessor = None, | |
samples: List[Dict] = None, | |
tokenizer: "TTSTokenizer" = None, | |
compute_f0: bool = False, | |
compute_energy: bool = False, | |
f0_cache_path: str = None, | |
energy_cache_path: str = None, | |
return_wav: bool = False, | |
batch_group_size: int = 0, | |
min_text_len: int = 0, | |
max_text_len: int = float("inf"), | |
min_audio_len: int = 0, | |
max_audio_len: int = float("inf"), | |
phoneme_cache_path: str = None, | |
precompute_num_workers: int = 0, | |
speaker_id_mapping: Dict = None, | |
d_vector_mapping: Dict = None, | |
language_id_mapping: Dict = None, | |
use_noise_augment: bool = False, | |
start_by_longest: bool = False, | |
verbose: bool = False, | |
): | |
"""Generic 📂 data loader for `tts` models. It is configurable for different outputs and needs. | |
If you need something different, you can subclass and override. | |
Args: | |
outputs_per_step (int): Number of time frames predicted per step. | |
compute_linear_spec (bool): compute linear spectrogram if True. | |
ap (TTS.tts.utils.AudioProcessor): Audio processor object. | |
samples (list): List of dataset samples. | |
tokenizer (TTSTokenizer): tokenizer to convert text to sequence IDs. If None init internally else | |
use the given. Defaults to None. | |
compute_f0 (bool): compute f0 if True. Defaults to False. | |
compute_energy (bool): compute energy if True. Defaults to False. | |
f0_cache_path (str): Path to store f0 cache. Defaults to None. | |
energy_cache_path (str): Path to store energy cache. Defaults to None. | |
return_wav (bool): Return the waveform of the sample. Defaults to False. | |
batch_group_size (int): Range of batch randomization after sorting | |
sequences by length. It shuffles each batch with bucketing to gather similar lenght sequences in a | |
batch. Set 0 to disable. Defaults to 0. | |
min_text_len (int): Minimum length of input text to be used. All shorter samples will be ignored. | |
Defaults to 0. | |
max_text_len (int): Maximum length of input text to be used. All longer samples will be ignored. | |
Defaults to float("inf"). | |
min_audio_len (int): Minimum length of input audio to be used. All shorter samples will be ignored. | |
Defaults to 0. | |
max_audio_len (int): Maximum length of input audio to be used. All longer samples will be ignored. | |
The maximum length in the dataset defines the VRAM used in the training. Hence, pay attention to | |
this value if you encounter an OOM error in training. Defaults to float("inf"). | |
phoneme_cache_path (str): Path to cache computed phonemes. It writes phonemes of each sample to a | |
separate file. Defaults to None. | |
precompute_num_workers (int): Number of workers to precompute features. Defaults to 0. | |
speaker_id_mapping (dict): Mapping of speaker names to IDs used to compute embedding vectors by the | |
embedding layer. Defaults to None. | |
d_vector_mapping (dict): Mapping of wav files to computed d-vectors. Defaults to None. | |
use_noise_augment (bool): Enable adding random noise to wav for augmentation. Defaults to False. | |
start_by_longest (bool): Start by longest sequence. It is especially useful to check OOM. Defaults to False. | |
verbose (bool): Print diagnostic information. Defaults to false. | |
""" | |
super().__init__() | |
self.batch_group_size = batch_group_size | |
self._samples = samples | |
self.outputs_per_step = outputs_per_step | |
self.compute_linear_spec = compute_linear_spec | |
self.return_wav = return_wav | |
self.compute_f0 = compute_f0 | |
self.compute_energy = compute_energy | |
self.f0_cache_path = f0_cache_path | |
self.energy_cache_path = energy_cache_path | |
self.min_audio_len = min_audio_len | |
self.max_audio_len = max_audio_len | |
self.min_text_len = min_text_len | |
self.max_text_len = max_text_len | |
self.ap = ap | |
self.phoneme_cache_path = phoneme_cache_path | |
self.speaker_id_mapping = speaker_id_mapping | |
self.d_vector_mapping = d_vector_mapping | |
self.language_id_mapping = language_id_mapping | |
self.use_noise_augment = use_noise_augment | |
self.start_by_longest = start_by_longest | |
self.verbose = verbose | |
self.rescue_item_idx = 1 | |
self.pitch_computed = False | |
self.tokenizer = tokenizer | |
if self.tokenizer.use_phonemes: | |
self.phoneme_dataset = PhonemeDataset( | |
self.samples, self.tokenizer, phoneme_cache_path, precompute_num_workers=precompute_num_workers | |
) | |
if compute_f0: | |
self.f0_dataset = F0Dataset( | |
self.samples, self.ap, cache_path=f0_cache_path, precompute_num_workers=precompute_num_workers | |
) | |
if compute_energy: | |
self.energy_dataset = EnergyDataset( | |
self.samples, self.ap, cache_path=energy_cache_path, precompute_num_workers=precompute_num_workers | |
) | |
if self.verbose: | |
self.print_logs() | |
def lengths(self): | |
lens = [] | |
for item in self.samples: | |
_, wav_file, *_ = _parse_sample(item) | |
audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio | |
lens.append(audio_len) | |
return lens | |
def samples(self): | |
return self._samples | |
def samples(self, new_samples): | |
self._samples = new_samples | |
if hasattr(self, "f0_dataset"): | |
self.f0_dataset.samples = new_samples | |
if hasattr(self, "energy_dataset"): | |
self.energy_dataset.samples = new_samples | |
if hasattr(self, "phoneme_dataset"): | |
self.phoneme_dataset.samples = new_samples | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
return self.load_data(idx) | |
def print_logs(self, level: int = 0) -> None: | |
indent = "\t" * level | |
print("\n") | |
print(f"{indent}> DataLoader initialization") | |
print(f"{indent}| > Tokenizer:") | |
self.tokenizer.print_logs(level + 1) | |
print(f"{indent}| > Number of instances : {len(self.samples)}") | |
def load_wav(self, filename): | |
waveform = self.ap.load_wav(filename) | |
assert waveform.size > 0 | |
return waveform | |
def get_phonemes(self, idx, text): | |
out_dict = self.phoneme_dataset[idx] | |
assert text == out_dict["text"], f"{text} != {out_dict['text']}" | |
assert len(out_dict["token_ids"]) > 0 | |
return out_dict | |
def get_f0(self, idx): | |
out_dict = self.f0_dataset[idx] | |
item = self.samples[idx] | |
assert item["audio_unique_name"] == out_dict["audio_unique_name"] | |
return out_dict | |
def get_energy(self, idx): | |
out_dict = self.energy_dataset[idx] | |
item = self.samples[idx] | |
assert item["audio_unique_name"] == out_dict["audio_unique_name"] | |
return out_dict | |
def get_attn_mask(attn_file): | |
return np.load(attn_file) | |
def get_token_ids(self, idx, text): | |
if self.tokenizer.use_phonemes: | |
token_ids = self.get_phonemes(idx, text)["token_ids"] | |
else: | |
token_ids = self.tokenizer.text_to_ids(text) | |
return np.array(token_ids, dtype=np.int32) | |
def load_data(self, idx): | |
item = self.samples[idx] | |
raw_text = item["text"] | |
wav = np.asarray(self.load_wav(item["audio_file"]), dtype=np.float32) | |
# apply noise for augmentation | |
if self.use_noise_augment: | |
wav = noise_augment_audio(wav) | |
# get token ids | |
token_ids = self.get_token_ids(idx, item["text"]) | |
# get pre-computed attention maps | |
attn = None | |
if "alignment_file" in item: | |
attn = self.get_attn_mask(item["alignment_file"]) | |
# after phonemization the text length may change | |
# this is a shareful 🤭 hack to prevent longer phonemes | |
# TODO: find a better fix | |
if len(token_ids) > self.max_text_len or len(wav) < self.min_audio_len: | |
self.rescue_item_idx += 1 | |
return self.load_data(self.rescue_item_idx) | |
# get f0 values | |
f0 = None | |
if self.compute_f0: | |
f0 = self.get_f0(idx)["f0"] | |
energy = None | |
if self.compute_energy: | |
energy = self.get_energy(idx)["energy"] | |
sample = { | |
"raw_text": raw_text, | |
"token_ids": token_ids, | |
"wav": wav, | |
"pitch": f0, | |
"energy": energy, | |
"attn": attn, | |
"item_idx": item["audio_file"], | |
"speaker_name": item["speaker_name"], | |
"language_name": item["language"], | |
"wav_file_name": os.path.basename(item["audio_file"]), | |
"audio_unique_name": item["audio_unique_name"], | |
} | |
return sample | |
def _compute_lengths(samples): | |
new_samples = [] | |
for item in samples: | |
audio_length = os.path.getsize(item["audio_file"]) / 16 * 8 # assuming 16bit audio | |
text_lenght = len(item["text"]) | |
item["audio_length"] = audio_length | |
item["text_length"] = text_lenght | |
new_samples += [item] | |
return new_samples | |
def filter_by_length(lengths: List[int], min_len: int, max_len: int): | |
idxs = np.argsort(lengths) # ascending order | |
ignore_idx = [] | |
keep_idx = [] | |
for idx in idxs: | |
length = lengths[idx] | |
if length < min_len or length > max_len: | |
ignore_idx.append(idx) | |
else: | |
keep_idx.append(idx) | |
return ignore_idx, keep_idx | |
def sort_by_length(samples: List[List]): | |
audio_lengths = [s["audio_length"] for s in samples] | |
idxs = np.argsort(audio_lengths) # ascending order | |
return idxs | |
def create_buckets(samples, batch_group_size: int): | |
assert batch_group_size > 0 | |
for i in range(len(samples) // batch_group_size): | |
offset = i * batch_group_size | |
end_offset = offset + batch_group_size | |
temp_items = samples[offset:end_offset] | |
random.shuffle(temp_items) | |
samples[offset:end_offset] = temp_items | |
return samples | |
def _select_samples_by_idx(idxs, samples): | |
samples_new = [] | |
for idx in idxs: | |
samples_new.append(samples[idx]) | |
return samples_new | |
def preprocess_samples(self): | |
r"""Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length | |
range. | |
""" | |
samples = self._compute_lengths(self.samples) | |
# sort items based on the sequence length in ascending order | |
text_lengths = [i["text_length"] for i in samples] | |
audio_lengths = [i["audio_length"] for i in samples] | |
text_ignore_idx, text_keep_idx = self.filter_by_length(text_lengths, self.min_text_len, self.max_text_len) | |
audio_ignore_idx, audio_keep_idx = self.filter_by_length(audio_lengths, self.min_audio_len, self.max_audio_len) | |
keep_idx = list(set(audio_keep_idx) & set(text_keep_idx)) | |
ignore_idx = list(set(audio_ignore_idx) | set(text_ignore_idx)) | |
samples = self._select_samples_by_idx(keep_idx, samples) | |
sorted_idxs = self.sort_by_length(samples) | |
if self.start_by_longest: | |
longest_idxs = sorted_idxs[-1] | |
sorted_idxs[-1] = sorted_idxs[0] | |
sorted_idxs[0] = longest_idxs | |
samples = self._select_samples_by_idx(sorted_idxs, samples) | |
if len(samples) == 0: | |
raise RuntimeError(" [!] No samples left") | |
# shuffle batch groups | |
# create batches with similar length items | |
# the larger the `batch_group_size`, the higher the length variety in a batch. | |
if self.batch_group_size > 0: | |
samples = self.create_buckets(samples, self.batch_group_size) | |
# update items to the new sorted items | |
audio_lengths = [s["audio_length"] for s in samples] | |
text_lengths = [s["text_length"] for s in samples] | |
self.samples = samples | |
if self.verbose: | |
print(" | > Preprocessing samples") | |
print(" | > Max text length: {}".format(np.max(text_lengths))) | |
print(" | > Min text length: {}".format(np.min(text_lengths))) | |
print(" | > Avg text length: {}".format(np.mean(text_lengths))) | |
print(" | ") | |
print(" | > Max audio length: {}".format(np.max(audio_lengths))) | |
print(" | > Min audio length: {}".format(np.min(audio_lengths))) | |
print(" | > Avg audio length: {}".format(np.mean(audio_lengths))) | |
print(f" | > Num. instances discarded samples: {len(ignore_idx)}") | |
print(" | > Batch group size: {}.".format(self.batch_group_size)) | |
def _sort_batch(batch, text_lengths): | |
"""Sort the batch by the input text length for RNN efficiency. | |
Args: | |
batch (Dict): Batch returned by `__getitem__`. | |
text_lengths (List[int]): Lengths of the input character sequences. | |
""" | |
text_lengths, ids_sorted_decreasing = torch.sort(torch.LongTensor(text_lengths), dim=0, descending=True) | |
batch = [batch[idx] for idx in ids_sorted_decreasing] | |
return batch, text_lengths, ids_sorted_decreasing | |
def collate_fn(self, batch): | |
r""" | |
Perform preprocessing and create a final data batch: | |
1. Sort batch instances by text-length | |
2. Convert Audio signal to features. | |
3. PAD sequences wrt r. | |
4. Load to Torch. | |
""" | |
# Puts each data field into a tensor with outer dimension batch size | |
if isinstance(batch[0], collections.abc.Mapping): | |
token_ids_lengths = np.array([len(d["token_ids"]) for d in batch]) | |
# sort items with text input length for RNN efficiency | |
batch, token_ids_lengths, ids_sorted_decreasing = self._sort_batch(batch, token_ids_lengths) | |
# convert list of dicts to dict of lists | |
batch = {k: [dic[k] for dic in batch] for k in batch[0]} | |
# get language ids from language names | |
if self.language_id_mapping is not None: | |
language_ids = [self.language_id_mapping[ln] for ln in batch["language_name"]] | |
else: | |
language_ids = None | |
# get pre-computed d-vectors | |
if self.d_vector_mapping is not None: | |
embedding_keys = list(batch["audio_unique_name"]) | |
d_vectors = [self.d_vector_mapping[w]["embedding"] for w in embedding_keys] | |
else: | |
d_vectors = None | |
# get numerical speaker ids from speaker names | |
if self.speaker_id_mapping: | |
speaker_ids = [self.speaker_id_mapping[sn] for sn in batch["speaker_name"]] | |
else: | |
speaker_ids = None | |
# compute features | |
mel = [self.ap.melspectrogram(w).astype("float32") for w in batch["wav"]] | |
mel_lengths = [m.shape[1] for m in mel] | |
# lengths adjusted by the reduction factor | |
mel_lengths_adjusted = [ | |
m.shape[1] + (self.outputs_per_step - (m.shape[1] % self.outputs_per_step)) | |
if m.shape[1] % self.outputs_per_step | |
else m.shape[1] | |
for m in mel | |
] | |
# compute 'stop token' targets | |
stop_targets = [np.array([0.0] * (mel_len - 1) + [1.0]) for mel_len in mel_lengths] | |
# PAD stop targets | |
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step) | |
# PAD sequences with longest instance in the batch | |
token_ids = prepare_data(batch["token_ids"]).astype(np.int32) | |
# PAD features with longest instance | |
mel = prepare_tensor(mel, self.outputs_per_step) | |
# B x D x T --> B x T x D | |
mel = mel.transpose(0, 2, 1) | |
# convert things to pytorch | |
token_ids_lengths = torch.LongTensor(token_ids_lengths) | |
token_ids = torch.LongTensor(token_ids) | |
mel = torch.FloatTensor(mel).contiguous() | |
mel_lengths = torch.LongTensor(mel_lengths) | |
stop_targets = torch.FloatTensor(stop_targets) | |
# speaker vectors | |
if d_vectors is not None: | |
d_vectors = torch.FloatTensor(d_vectors) | |
if speaker_ids is not None: | |
speaker_ids = torch.LongTensor(speaker_ids) | |
if language_ids is not None: | |
language_ids = torch.LongTensor(language_ids) | |
# compute linear spectrogram | |
linear = None | |
if self.compute_linear_spec: | |
linear = [self.ap.spectrogram(w).astype("float32") for w in batch["wav"]] | |
linear = prepare_tensor(linear, self.outputs_per_step) | |
linear = linear.transpose(0, 2, 1) | |
assert mel.shape[1] == linear.shape[1] | |
linear = torch.FloatTensor(linear).contiguous() | |
# format waveforms | |
wav_padded = None | |
if self.return_wav: | |
wav_lengths = [w.shape[0] for w in batch["wav"]] | |
max_wav_len = max(mel_lengths_adjusted) * self.ap.hop_length | |
wav_lengths = torch.LongTensor(wav_lengths) | |
wav_padded = torch.zeros(len(batch["wav"]), 1, max_wav_len) | |
for i, w in enumerate(batch["wav"]): | |
mel_length = mel_lengths_adjusted[i] | |
w = np.pad(w, (0, self.ap.hop_length * self.outputs_per_step), mode="edge") | |
w = w[: mel_length * self.ap.hop_length] | |
wav_padded[i, :, : w.shape[0]] = torch.from_numpy(w) | |
wav_padded.transpose_(1, 2) | |
# format F0 | |
if self.compute_f0: | |
pitch = prepare_data(batch["pitch"]) | |
assert mel.shape[1] == pitch.shape[1], f"[!] {mel.shape} vs {pitch.shape}" | |
pitch = torch.FloatTensor(pitch)[:, None, :].contiguous() # B x 1 xT | |
else: | |
pitch = None | |
# format energy | |
if self.compute_energy: | |
energy = prepare_data(batch["energy"]) | |
assert mel.shape[1] == energy.shape[1], f"[!] {mel.shape} vs {energy.shape}" | |
energy = torch.FloatTensor(energy)[:, None, :].contiguous() # B x 1 xT | |
else: | |
energy = None | |
# format attention masks | |
attns = None | |
if batch["attn"][0] is not None: | |
attns = [batch["attn"][idx].T for idx in ids_sorted_decreasing] | |
for idx, attn in enumerate(attns): | |
pad2 = mel.shape[1] - attn.shape[1] | |
pad1 = token_ids.shape[1] - attn.shape[0] | |
assert pad1 >= 0 and pad2 >= 0, f"[!] Negative padding - {pad1} and {pad2}" | |
attn = np.pad(attn, [[0, pad1], [0, pad2]]) | |
attns[idx] = attn | |
attns = prepare_tensor(attns, self.outputs_per_step) | |
attns = torch.FloatTensor(attns).unsqueeze(1) | |
return { | |
"token_id": token_ids, | |
"token_id_lengths": token_ids_lengths, | |
"speaker_names": batch["speaker_name"], | |
"linear": linear, | |
"mel": mel, | |
"mel_lengths": mel_lengths, | |
"stop_targets": stop_targets, | |
"item_idxs": batch["item_idx"], | |
"d_vectors": d_vectors, | |
"speaker_ids": speaker_ids, | |
"attns": attns, | |
"waveform": wav_padded, | |
"raw_text": batch["raw_text"], | |
"pitch": pitch, | |
"energy": energy, | |
"language_ids": language_ids, | |
"audio_unique_names": batch["audio_unique_name"], | |
} | |
raise TypeError( | |
( | |
"batch must contain tensors, numbers, dicts or lists;\ | |
found {}".format( | |
type(batch[0]) | |
) | |
) | |
) | |
class PhonemeDataset(Dataset): | |
"""Phoneme Dataset for converting input text to phonemes and then token IDs | |
At initialization, it pre-computes the phonemes under `cache_path` and loads them in training to reduce data | |
loading latency. If `cache_path` is already present, it skips the pre-computation. | |
Args: | |
samples (Union[List[List], List[Dict]]): | |
List of samples. Each sample is a list or a dict. | |
tokenizer (TTSTokenizer): | |
Tokenizer to convert input text to phonemes. | |
cache_path (str): | |
Path to cache phonemes. If `cache_path` is already present or None, it skips the pre-computation. | |
precompute_num_workers (int): | |
Number of workers used for pre-computing the phonemes. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
samples: Union[List[Dict], List[List]], | |
tokenizer: "TTSTokenizer", | |
cache_path: str, | |
precompute_num_workers=0, | |
): | |
self.samples = samples | |
self.tokenizer = tokenizer | |
self.cache_path = cache_path | |
if cache_path is not None and not os.path.exists(cache_path): | |
os.makedirs(cache_path) | |
self.precompute(precompute_num_workers) | |
def __getitem__(self, index): | |
item = self.samples[index] | |
ids = self.compute_or_load(string2filename(item["audio_unique_name"]), item["text"], item["language"]) | |
ph_hat = self.tokenizer.ids_to_text(ids) | |
return {"text": item["text"], "ph_hat": ph_hat, "token_ids": ids, "token_ids_len": len(ids)} | |
def __len__(self): | |
return len(self.samples) | |
def compute_or_load(self, file_name, text, language): | |
"""Compute phonemes for the given text. | |
If the phonemes are already cached, load them from cache. | |
""" | |
file_ext = "_phoneme.npy" | |
cache_path = os.path.join(self.cache_path, file_name + file_ext) | |
try: | |
ids = np.load(cache_path) | |
except FileNotFoundError: | |
ids = self.tokenizer.text_to_ids(text, language=language) | |
np.save(cache_path, ids) | |
return ids | |
def get_pad_id(self): | |
"""Get pad token ID for sequence padding""" | |
return self.tokenizer.pad_id | |
def precompute(self, num_workers=1): | |
"""Precompute phonemes for all samples. | |
We use pytorch dataloader because we are lazy. | |
""" | |
print("[*] Pre-computing phonemes...") | |
with tqdm.tqdm(total=len(self)) as pbar: | |
batch_size = num_workers if num_workers > 0 else 1 | |
dataloder = torch.utils.data.DataLoader( | |
batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn | |
) | |
for _ in dataloder: | |
pbar.update(batch_size) | |
def collate_fn(self, batch): | |
ids = [item["token_ids"] for item in batch] | |
ids_lens = [item["token_ids_len"] for item in batch] | |
texts = [item["text"] for item in batch] | |
texts_hat = [item["ph_hat"] for item in batch] | |
ids_lens_max = max(ids_lens) | |
ids_torch = torch.LongTensor(len(ids), ids_lens_max).fill_(self.get_pad_id()) | |
for i, ids_len in enumerate(ids_lens): | |
ids_torch[i, :ids_len] = torch.LongTensor(ids[i]) | |
return {"text": texts, "ph_hat": texts_hat, "token_ids": ids_torch} | |
def print_logs(self, level: int = 0) -> None: | |
indent = "\t" * level | |
print("\n") | |
print(f"{indent}> PhonemeDataset ") | |
print(f"{indent}| > Tokenizer:") | |
self.tokenizer.print_logs(level + 1) | |
print(f"{indent}| > Number of instances : {len(self.samples)}") | |
class F0Dataset: | |
"""F0 Dataset for computing F0 from wav files in CPU | |
Pre-compute F0 values for all the samples at initialization if `cache_path` is not None or already present. It | |
also computes the mean and std of F0 values if `normalize_f0` is True. | |
Args: | |
samples (Union[List[List], List[Dict]]): | |
List of samples. Each sample is a list or a dict. | |
ap (AudioProcessor): | |
AudioProcessor to compute F0 from wav files. | |
cache_path (str): | |
Path to cache F0 values. If `cache_path` is already present or None, it skips the pre-computation. | |
Defaults to None. | |
precompute_num_workers (int): | |
Number of workers used for pre-computing the F0 values. Defaults to 0. | |
normalize_f0 (bool): | |
Whether to normalize F0 values by mean and std. Defaults to True. | |
""" | |
def __init__( | |
self, | |
samples: Union[List[List], List[Dict]], | |
ap: "AudioProcessor", | |
audio_config=None, # pylint: disable=unused-argument | |
verbose=False, | |
cache_path: str = None, | |
precompute_num_workers=0, | |
normalize_f0=True, | |
): | |
self.samples = samples | |
self.ap = ap | |
self.verbose = verbose | |
self.cache_path = cache_path | |
self.normalize_f0 = normalize_f0 | |
self.pad_id = 0.0 | |
self.mean = None | |
self.std = None | |
if cache_path is not None and not os.path.exists(cache_path): | |
os.makedirs(cache_path) | |
self.precompute(precompute_num_workers) | |
if normalize_f0: | |
self.load_stats(cache_path) | |
def __getitem__(self, idx): | |
item = self.samples[idx] | |
f0 = self.compute_or_load(item["audio_file"], string2filename(item["audio_unique_name"])) | |
if self.normalize_f0: | |
assert self.mean is not None and self.std is not None, " [!] Mean and STD is not available" | |
f0 = self.normalize(f0) | |
return {"audio_unique_name": item["audio_unique_name"], "f0": f0} | |
def __len__(self): | |
return len(self.samples) | |
def precompute(self, num_workers=0): | |
print("[*] Pre-computing F0s...") | |
with tqdm.tqdm(total=len(self)) as pbar: | |
batch_size = num_workers if num_workers > 0 else 1 | |
# we do not normalize at preproessing | |
normalize_f0 = self.normalize_f0 | |
self.normalize_f0 = False | |
dataloder = torch.utils.data.DataLoader( | |
batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn | |
) | |
computed_data = [] | |
for batch in dataloder: | |
f0 = batch["f0"] | |
computed_data.append(f for f in f0) | |
pbar.update(batch_size) | |
self.normalize_f0 = normalize_f0 | |
if self.normalize_f0: | |
computed_data = [tensor for batch in computed_data for tensor in batch] # flatten | |
pitch_mean, pitch_std = self.compute_pitch_stats(computed_data) | |
pitch_stats = {"mean": pitch_mean, "std": pitch_std} | |
np.save(os.path.join(self.cache_path, "pitch_stats"), pitch_stats, allow_pickle=True) | |
def get_pad_id(self): | |
return self.pad_id | |
def create_pitch_file_path(file_name, cache_path): | |
pitch_file = os.path.join(cache_path, file_name + "_pitch.npy") | |
return pitch_file | |
def _compute_and_save_pitch(ap, wav_file, pitch_file=None): | |
wav = ap.load_wav(wav_file) | |
pitch = ap.compute_f0(wav) | |
if pitch_file: | |
np.save(pitch_file, pitch) | |
return pitch | |
def compute_pitch_stats(pitch_vecs): | |
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs]) | |
mean, std = np.mean(nonzeros), np.std(nonzeros) | |
return mean, std | |
def load_stats(self, cache_path): | |
stats_path = os.path.join(cache_path, "pitch_stats.npy") | |
stats = np.load(stats_path, allow_pickle=True).item() | |
self.mean = stats["mean"].astype(np.float32) | |
self.std = stats["std"].astype(np.float32) | |
def normalize(self, pitch): | |
zero_idxs = np.where(pitch == 0.0)[0] | |
pitch = pitch - self.mean | |
pitch = pitch / self.std | |
pitch[zero_idxs] = 0.0 | |
return pitch | |
def denormalize(self, pitch): | |
zero_idxs = np.where(pitch == 0.0)[0] | |
pitch *= self.std | |
pitch += self.mean | |
pitch[zero_idxs] = 0.0 | |
return pitch | |
def compute_or_load(self, wav_file, audio_unique_name): | |
""" | |
compute pitch and return a numpy array of pitch values | |
""" | |
pitch_file = self.create_pitch_file_path(audio_unique_name, self.cache_path) | |
if not os.path.exists(pitch_file): | |
pitch = self._compute_and_save_pitch(self.ap, wav_file, pitch_file) | |
else: | |
pitch = np.load(pitch_file) | |
return pitch.astype(np.float32) | |
def collate_fn(self, batch): | |
audio_unique_name = [item["audio_unique_name"] for item in batch] | |
f0s = [item["f0"] for item in batch] | |
f0_lens = [len(item["f0"]) for item in batch] | |
f0_lens_max = max(f0_lens) | |
f0s_torch = torch.LongTensor(len(f0s), f0_lens_max).fill_(self.get_pad_id()) | |
for i, f0_len in enumerate(f0_lens): | |
f0s_torch[i, :f0_len] = torch.LongTensor(f0s[i]) | |
return {"audio_unique_name": audio_unique_name, "f0": f0s_torch, "f0_lens": f0_lens} | |
def print_logs(self, level: int = 0) -> None: | |
indent = "\t" * level | |
print("\n") | |
print(f"{indent}> F0Dataset ") | |
print(f"{indent}| > Number of instances : {len(self.samples)}") | |
class EnergyDataset: | |
"""Energy Dataset for computing Energy from wav files in CPU | |
Pre-compute Energy values for all the samples at initialization if `cache_path` is not None or already present. It | |
also computes the mean and std of Energy values if `normalize_Energy` is True. | |
Args: | |
samples (Union[List[List], List[Dict]]): | |
List of samples. Each sample is a list or a dict. | |
ap (AudioProcessor): | |
AudioProcessor to compute Energy from wav files. | |
cache_path (str): | |
Path to cache Energy values. If `cache_path` is already present or None, it skips the pre-computation. | |
Defaults to None. | |
precompute_num_workers (int): | |
Number of workers used for pre-computing the Energy values. Defaults to 0. | |
normalize_Energy (bool): | |
Whether to normalize Energy values by mean and std. Defaults to True. | |
""" | |
def __init__( | |
self, | |
samples: Union[List[List], List[Dict]], | |
ap: "AudioProcessor", | |
verbose=False, | |
cache_path: str = None, | |
precompute_num_workers=0, | |
normalize_energy=True, | |
): | |
self.samples = samples | |
self.ap = ap | |
self.verbose = verbose | |
self.cache_path = cache_path | |
self.normalize_energy = normalize_energy | |
self.pad_id = 0.0 | |
self.mean = None | |
self.std = None | |
if cache_path is not None and not os.path.exists(cache_path): | |
os.makedirs(cache_path) | |
self.precompute(precompute_num_workers) | |
if normalize_energy: | |
self.load_stats(cache_path) | |
def __getitem__(self, idx): | |
item = self.samples[idx] | |
energy = self.compute_or_load(item["audio_file"], string2filename(item["audio_unique_name"])) | |
if self.normalize_energy: | |
assert self.mean is not None and self.std is not None, " [!] Mean and STD is not available" | |
energy = self.normalize(energy) | |
return {"audio_unique_name": item["audio_unique_name"], "energy": energy} | |
def __len__(self): | |
return len(self.samples) | |
def precompute(self, num_workers=0): | |
print("[*] Pre-computing energys...") | |
with tqdm.tqdm(total=len(self)) as pbar: | |
batch_size = num_workers if num_workers > 0 else 1 | |
# we do not normalize at preproessing | |
normalize_energy = self.normalize_energy | |
self.normalize_energy = False | |
dataloder = torch.utils.data.DataLoader( | |
batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn | |
) | |
computed_data = [] | |
for batch in dataloder: | |
energy = batch["energy"] | |
computed_data.append(e for e in energy) | |
pbar.update(batch_size) | |
self.normalize_energy = normalize_energy | |
if self.normalize_energy: | |
computed_data = [tensor for batch in computed_data for tensor in batch] # flatten | |
energy_mean, energy_std = self.compute_energy_stats(computed_data) | |
energy_stats = {"mean": energy_mean, "std": energy_std} | |
np.save(os.path.join(self.cache_path, "energy_stats"), energy_stats, allow_pickle=True) | |
def get_pad_id(self): | |
return self.pad_id | |
def create_energy_file_path(wav_file, cache_path): | |
file_name = os.path.splitext(os.path.basename(wav_file))[0] | |
energy_file = os.path.join(cache_path, file_name + "_energy.npy") | |
return energy_file | |
def _compute_and_save_energy(ap, wav_file, energy_file=None): | |
wav = ap.load_wav(wav_file) | |
energy = calculate_energy(wav, fft_size=ap.fft_size, hop_length=ap.hop_length, win_length=ap.win_length) | |
if energy_file: | |
np.save(energy_file, energy) | |
return energy | |
def compute_energy_stats(energy_vecs): | |
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in energy_vecs]) | |
mean, std = np.mean(nonzeros), np.std(nonzeros) | |
return mean, std | |
def load_stats(self, cache_path): | |
stats_path = os.path.join(cache_path, "energy_stats.npy") | |
stats = np.load(stats_path, allow_pickle=True).item() | |
self.mean = stats["mean"].astype(np.float32) | |
self.std = stats["std"].astype(np.float32) | |
def normalize(self, energy): | |
zero_idxs = np.where(energy == 0.0)[0] | |
energy = energy - self.mean | |
energy = energy / self.std | |
energy[zero_idxs] = 0.0 | |
return energy | |
def denormalize(self, energy): | |
zero_idxs = np.where(energy == 0.0)[0] | |
energy *= self.std | |
energy += self.mean | |
energy[zero_idxs] = 0.0 | |
return energy | |
def compute_or_load(self, wav_file, audio_unique_name): | |
""" | |
compute energy and return a numpy array of energy values | |
""" | |
energy_file = self.create_energy_file_path(audio_unique_name, self.cache_path) | |
if not os.path.exists(energy_file): | |
energy = self._compute_and_save_energy(self.ap, wav_file, energy_file) | |
else: | |
energy = np.load(energy_file) | |
return energy.astype(np.float32) | |
def collate_fn(self, batch): | |
audio_unique_name = [item["audio_unique_name"] for item in batch] | |
energys = [item["energy"] for item in batch] | |
energy_lens = [len(item["energy"]) for item in batch] | |
energy_lens_max = max(energy_lens) | |
energys_torch = torch.LongTensor(len(energys), energy_lens_max).fill_(self.get_pad_id()) | |
for i, energy_len in enumerate(energy_lens): | |
energys_torch[i, :energy_len] = torch.LongTensor(energys[i]) | |
return {"audio_unique_name": audio_unique_name, "energy": energys_torch, "energy_lens": energy_lens} | |
def print_logs(self, level: int = 0) -> None: | |
indent = "\t" * level | |
print("\n") | |
print(f"{indent}> energyDataset ") | |
print(f"{indent}| > Number of instances : {len(self.samples)}") | |