Spaces:
Running
on
T4
Running
on
T4
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
import torch | |
import random | |
import os | |
import gradio as gr | |
model_id = int(os.getenv("Model")) | |
nsfw_filter = int(os.getenv("Safe")) | |
#stable-diffusion-xl-base-1.0 0 - base model | |
#Colossus_Project_XL 1 - better people | |
#AlbedoBaseXL_v11 2 - realistic | |
#JuggernautXL_v7 3 - better faces | |
#RealVisXL_V2.0 4 - better photorealism | |
model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", | |
"Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", | |
"Krebzonide/AlbedoBaseXL_v11/blob/main/albedobaseXL_v11.safetensors", | |
"Krebzonide/JuggernautXL_version5/blob/main/juggernautXL_v7Rundiffusion.safetensors", | |
"SG161222/RealVisXL_V2.0/blob/main/RealVisXL_V2.0.safetensors", | |
"Krebzonide/AcornIsSpinning_acornXLV1/blob/main/acornIsSpinning_acornxlV1.safetensors"] | |
naughtyWords = ["nude", "nsfw", "naked", "porn", "boob", "tit", "nipple", "vagina", "pussy", "panties", "underwear", "upskirt", "bottomless", "topless", "petite", "xxx"] | |
css = """ | |
.btn-green { | |
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; | |
border-color: #22c55e !important; | |
color: #166534 !important; | |
} | |
.btn-green:hover { | |
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; | |
} | |
""" | |
def generate(prompt, neg_prompt, samp_steps, cfg_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)): | |
prompt = prompt.lower() | |
if nsfw_filter: | |
if prompt[:10] == "krebzonide": | |
prompt = prompt[10:] | |
else: | |
neg_prompt = neg_prompt + ", child, nsfw, nipples, nude, underwear" | |
for word in naughtyWords: | |
if prompt.find(word) >= 0: | |
return None, 58008 | |
if seed < 0: | |
seed = random.randint(1,999999) | |
images = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
num_inference_steps=samp_steps, | |
guidance_scale=cfg_scale, | |
num_images_per_prompt=batch_size, | |
height=height, | |
width=width, | |
generator=torch.manual_seed(seed), | |
).images | |
return [(img, f"Image {i+1}") for i, img in enumerate(images)], seed | |
def set_base_model(base_model_id): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
global model_url_list | |
model_url = "https://huggingface.co/" + model_url_list[base_model_id] | |
pipe = StableDiffusionXLPipeline.from_single_file( | |
model_url, | |
torch_dtype = torch.float16, | |
variant = "fp16", | |
vae = vae, | |
use_safetensors = True, | |
use_auth_token="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" | |
) | |
pipe.to("cuda") | |
return pipe | |
def update_pixel_ratio(num1, num2): | |
return [round(num1*num2/1048576,3), num1-(num1%8)] | |
examples = [ | |
['A group of 4 students from University of Wisconsin Stout sitting at a table talking, men and women, detailed faces, focused', | |
'glitch, deformed, cross-eyed'], | |
['A serious capybara at work, wearing a suit', | |
'low quality'], | |
['a graffiti of a robot serving meals to people', | |
'low quality'], | |
['photo of a small cozy modern house in red woods on a mountain, solar panels, garage, driveway, great view, sunshine', | |
'red house'], | |
['cinematic photo of a woman sitting at a cafe, 35mm photograph, film, bokeh, professional, 4k, detailed face', | |
'drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly'], | |
['analog film photo of old woman on the streets of london, faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage', | |
'painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured']#, | |
#['nude photo of a 20 year old model in the back seat of a car, detailed face', | |
#'big boobs'], | |
#['nude photo of a 20 year old man, penis and testicles, dick and balls, erection', | |
#'woman'] | |
] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt") | |
submit_btn = gr.Button("Generate", elem_classes="btn-green") | |
with gr.Row(): | |
samp_steps = gr.Slider(1, 30, value=20, step=1, label="Sampling steps") | |
cfg_scale = gr.Slider(1, 10, value=4, step=0.5, label="Guidance scale") | |
batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=False) | |
with gr.Row(): | |
height = gr.Slider(label="Height", value=1024, minimum=8, maximum=1536, step=8) | |
width = gr.Slider(label="Width", value=1024, minimum=8, maximum=1024, step=8) | |
with gr.Row(): | |
pixels = gr.Number(label="Pixel Ratio", value=1, interactive=False) | |
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) | |
gallery = gr.Gallery(label="Generated images") | |
with gr.Row(): | |
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) | |
ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt]) | |
submit_btn.click(generate, [prompt, negative_prompt, samp_steps, cfg_scale, batch_size, seed, height, width], [gallery, lastSeed], queue=True) | |
height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False) | |
width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False) | |
pipe = set_base_model(model_id) | |
demo.launch(debug=True) |