Spaces:
Sleeping
Sleeping
Added zerogpu support, summarization with different language models and q/a feature
Browse files
app.py
CHANGED
@@ -1,24 +1,104 @@
|
|
1 |
import gradio as gr
|
2 |
from audio_processing import process_audio, print_results
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
output = "Detected language changes:\n\n"
|
7 |
for segment in language_segments:
|
8 |
output += f"Language: {segment['language']}\n"
|
9 |
output += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
10 |
|
11 |
-
output += "Transcription with language detection and speaker diarization:\n\n"
|
|
|
12 |
for segment in final_segments:
|
13 |
-
output += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']})
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from audio_processing import process_audio, print_results
|
3 |
+
from transformers import pipeline
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Check if CUDA is available
|
8 |
+
cuda_available = torch.cuda.is_available()
|
9 |
+
|
10 |
+
# Initialize the summarization and question-answering models
|
11 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
12 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
13 |
+
|
14 |
+
# Move models to GPU if available
|
15 |
+
if cuda_available:
|
16 |
+
summarizer.to('cuda')
|
17 |
+
qa_model.to('cuda')
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def transcribe_audio(audio_file, translate, model_size):
|
21 |
+
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
22 |
|
23 |
output = "Detected language changes:\n\n"
|
24 |
for segment in language_segments:
|
25 |
output += f"Language: {segment['language']}\n"
|
26 |
output += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
27 |
|
28 |
+
output += f"Transcription with language detection and speaker diarization (using {model_size} model):\n\n"
|
29 |
+
full_text = ""
|
30 |
for segment in final_segments:
|
31 |
+
output += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:\n"
|
32 |
+
output += f"Original: {segment['text']}\n"
|
33 |
+
if translate:
|
34 |
+
output += f"Translated: {segment['translated']}\n"
|
35 |
+
full_text += segment['translated'] + " "
|
36 |
+
else:
|
37 |
+
full_text += segment['text'] + " "
|
38 |
+
output += "\n"
|
39 |
+
|
40 |
+
return output, full_text
|
41 |
+
|
42 |
+
@spaces.GPU
|
43 |
+
def summarize_text(text):
|
44 |
+
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
45 |
+
return summary
|
46 |
+
|
47 |
+
@spaces.GPU
|
48 |
+
def answer_question(context, question):
|
49 |
+
result = qa_model(question=question, context=context)
|
50 |
+
return result['answer']
|
51 |
+
|
52 |
+
@spaces.GPU
|
53 |
+
def process_and_summarize(audio_file, translate, model_size):
|
54 |
+
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
|
55 |
+
summary = summarize_text(full_text)
|
56 |
+
return transcription, summary
|
57 |
+
|
58 |
+
@spaces.GPU
|
59 |
+
def qa_interface(audio_file, translate, model_size, question):
|
60 |
+
_, full_text = transcribe_audio(audio_file, translate, model_size)
|
61 |
+
answer = answer_question(full_text, question)
|
62 |
+
return answer
|
63 |
+
|
64 |
+
# Main interface
|
65 |
+
with gr.Blocks() as iface:
|
66 |
+
gr.Markdown("# WhisperX Audio Transcription, Translation, Summarization, and QA (with ZeroGPU support)")
|
67 |
+
|
68 |
+
with gr.Tab("Transcribe and Summarize"):
|
69 |
+
audio_input = gr.Audio(type="filepath")
|
70 |
+
translate_checkbox = gr.Checkbox(label="Enable Translation")
|
71 |
+
model_dropdown = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"], label="Whisper Model Size", value="small")
|
72 |
+
transcribe_button = gr.Button("Transcribe and Summarize")
|
73 |
+
transcription_output = gr.Textbox(label="Transcription")
|
74 |
+
summary_output = gr.Textbox(label="Summary")
|
75 |
+
|
76 |
+
transcribe_button.click(
|
77 |
+
process_and_summarize,
|
78 |
+
inputs=[audio_input, translate_checkbox, model_dropdown],
|
79 |
+
outputs=[transcription_output, summary_output]
|
80 |
+
)
|
81 |
+
|
82 |
+
with gr.Tab("Question Answering"):
|
83 |
+
qa_audio_input = gr.Audio(type="filepath")
|
84 |
+
qa_translate_checkbox = gr.Checkbox(label="Enable Translation")
|
85 |
+
qa_model_dropdown = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"], label="Whisper Model Size", value="small")
|
86 |
+
question_input = gr.Textbox(label="Ask a question about the audio")
|
87 |
+
qa_button = gr.Button("Get Answer")
|
88 |
+
answer_output = gr.Textbox(label="Answer")
|
89 |
+
|
90 |
+
qa_button.click(
|
91 |
+
qa_interface,
|
92 |
+
inputs=[qa_audio_input, qa_translate_checkbox, qa_model_dropdown, question_input],
|
93 |
+
outputs=answer_output
|
94 |
+
)
|
95 |
+
|
96 |
+
gr.Markdown(
|
97 |
+
"""
|
98 |
+
## ZeroGPU Support
|
99 |
+
This application supports ZeroGPU for Hugging Face Spaces pro users.
|
100 |
+
GPU-intensive tasks are automatically optimized for better performance.
|
101 |
+
"""
|
102 |
+
)
|
103 |
|
104 |
iface.launch()
|