Spaces:
Sleeping
Sleeping
Update audio_processing.py
Browse files- audio_processing.py +37 -46
audio_processing.py
CHANGED
@@ -19,6 +19,26 @@ OVERLAP = 2
|
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
23 |
chunks = []
|
24 |
for i in range(0, len(audio), chunk_size - overlap):
|
@@ -28,24 +48,25 @@ def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000
|
|
28 |
chunks.append(chunk)
|
29 |
return chunks
|
30 |
|
31 |
-
@spaces.GPU
|
32 |
def process_audio(audio_file, translate=False, model_size="small"):
|
|
|
|
|
|
|
|
|
|
|
33 |
start_time = time.time()
|
34 |
|
35 |
try:
|
36 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
-
compute_type = "float16" if device == "cuda" else "float32"
|
38 |
audio = whisperx.load_audio(audio_file)
|
39 |
-
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
diarization_result = None
|
49 |
|
50 |
chunks = preprocess_audio(audio)
|
51 |
|
@@ -57,10 +78,10 @@ def process_audio(audio_file, translate=False, model_size="small"):
|
|
57 |
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
58 |
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
59 |
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
60 |
-
lang =
|
61 |
-
result_transcribe =
|
62 |
if translate:
|
63 |
-
result_translate =
|
64 |
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
65 |
for j, t_seg in enumerate(result_transcribe["segments"]):
|
66 |
segment_start = chunk_start_time + t_seg["start"]
|
@@ -115,34 +136,4 @@ def process_audio(audio_file, translate=False, model_size="small"):
|
|
115 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
116 |
raise
|
117 |
|
118 |
-
|
119 |
-
merged = []
|
120 |
-
for segment in segments:
|
121 |
-
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
122 |
-
merged.append(segment)
|
123 |
-
else:
|
124 |
-
# Find the overlap
|
125 |
-
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
126 |
-
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
127 |
-
|
128 |
-
if match.size / len(segment['text']) > similarity_threshold:
|
129 |
-
# Merge the segments
|
130 |
-
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
131 |
-
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
132 |
-
|
133 |
-
merged[-1]['end'] = segment['end']
|
134 |
-
merged[-1]['text'] = merged_text
|
135 |
-
if 'translated' in segment:
|
136 |
-
merged[-1]['translated'] = merged_translated
|
137 |
-
else:
|
138 |
-
# If no significant overlap, append as a new segment
|
139 |
-
merged.append(segment)
|
140 |
-
return merged
|
141 |
-
|
142 |
-
def print_results(segments):
|
143 |
-
for segment in segments:
|
144 |
-
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:")
|
145 |
-
print(f"Original: {segment['text']}")
|
146 |
-
if 'translated' in segment:
|
147 |
-
print(f"Translated: {segment['translated']}")
|
148 |
-
print()
|
|
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
# Global variables for models
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
compute_type = "float16" if device == "cuda" else "float32"
|
25 |
+
whisper_model = None
|
26 |
+
diarization_pipeline = None
|
27 |
+
|
28 |
+
def load_models(model_size="small"):
|
29 |
+
global whisper_model, diarization_pipeline
|
30 |
+
|
31 |
+
# Load Whisper model
|
32 |
+
whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
33 |
+
|
34 |
+
# Try to initialize diarization pipeline
|
35 |
+
try:
|
36 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
37 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
38 |
+
except Exception as e:
|
39 |
+
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
40 |
+
diarization_pipeline = None
|
41 |
+
|
42 |
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
43 |
chunks = []
|
44 |
for i in range(0, len(audio), chunk_size - overlap):
|
|
|
48 |
chunks.append(chunk)
|
49 |
return chunks
|
50 |
|
51 |
+
@spaces.GPU
|
52 |
def process_audio(audio_file, translate=False, model_size="small"):
|
53 |
+
global whisper_model, diarization_pipeline
|
54 |
+
|
55 |
+
if whisper_model is None:
|
56 |
+
load_models(model_size)
|
57 |
+
|
58 |
start_time = time.time()
|
59 |
|
60 |
try:
|
|
|
|
|
61 |
audio = whisperx.load_audio(audio_file)
|
|
|
62 |
|
63 |
+
# Perform diarization if pipeline is available
|
64 |
+
diarization_result = None
|
65 |
+
if diarization_pipeline is not None:
|
66 |
+
try:
|
67 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
68 |
+
except Exception as e:
|
69 |
+
logger.warning(f"Diarization failed: {str(e)}. Proceeding without diarization.")
|
|
|
70 |
|
71 |
chunks = preprocess_audio(audio)
|
72 |
|
|
|
78 |
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
79 |
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
80 |
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
81 |
+
lang = whisper_model.detect_language(chunk)
|
82 |
+
result_transcribe = whisper_model.transcribe(chunk, language=lang)
|
83 |
if translate:
|
84 |
+
result_translate = whisper_model.transcribe(chunk, task="translate")
|
85 |
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
86 |
for j, t_seg in enumerate(result_transcribe["segments"]):
|
87 |
segment_start = chunk_start_time + t_seg["start"]
|
|
|
136 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
137 |
raise
|
138 |
|
139 |
+
# The merge_nearby_segments and print_results functions remain unchanged
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|