Kr08 commited on
Commit
353faef
·
verified ·
1 Parent(s): 6d2ca12

Modified app.py, added streamlit session state persistence

Browse files
Files changed (1) hide show
  1. app.py +45 -90
app.py CHANGED
@@ -5,21 +5,15 @@ import streamlit as st
5
  import torchaudio as ta
6
 
7
  from io import BytesIO
8
- from transformers import AutoProcessor, SeamlessM4TModel, WhisperProcessor, WhisperForConditionalGeneration
9
 
10
- if torch.cuda.is_available():
11
- device = "cuda:0"
12
- torch_dtype = torch.float16
13
- else:
14
- device = "cpu"
15
- torch_dtype = torch.float32
16
 
17
- SAMPLING_RATE=16000
18
- task = "transcribe"
19
 
20
- print(f"{device} Active!")
21
-
22
- # load Whisper model and processor
23
  processor = WhisperProcessor.from_pretrained("openai/whisper-small")
24
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
25
 
@@ -31,113 +25,74 @@ st.sidebar.header("Upload Audio Files")
31
  uploaded_files = st.sidebar.file_uploader("Choose audio files", type=["mp3", "wav"], accept_multiple_files=True)
32
  submit_button = st.sidebar.button("Submit")
33
 
 
 
 
 
 
 
 
34
 
35
- # def transcribe_audio(audio_data):
36
- # recognizer = sr.Recognizer()
37
- # with sr.AudioFile(audio_data) as source:
38
- # audio = recognizer.record(source)
39
- # try:
40
- # # Transcribe the audio using Google Web Speech API
41
- # transcription = recognizer.recognize_google(audio)
42
- # return transcription
43
- # except sr.UnknownValueError:
44
- # return "Unable to transcribe the audio."
45
- # except sr.RequestError as e:
46
- # return f"Could not request results; {e}"
47
 
48
  def detect_language(audio_file):
49
- whisper_model = whisper.load_model("base")
 
50
  mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
51
- # detect the spoken language
52
- _, probs = whisper_model.detect_language(mel)
53
- print(f"Detected language: {max(probs[0], key=probs[0].get)}")
54
- return max(probs[0], key=probs[0].get)
55
-
56
- # if submit_button and uploaded_files is not None:
57
- # st.write("Files uploaded successfully!")
58
-
59
- # for uploaded_file in uploaded_files:
60
- # # Display file name and audio player
61
-
62
- # st.write(f"**File name**: {uploaded_file.name}")
63
- # st.audio(uploaded_file, format=uploaded_file.type)
64
-
65
- # # Transcription section
66
- # st.write("**Transcription**:")
67
-
68
- # # Read the uploaded file data
69
- # waveform, sampling_rate = ta.load(uploaded_file.getvalue())
70
- # resampled_inp = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
71
-
72
- # input_features = processor(resampled_inp[0], sampling_rate=16000, return_tensors='pt').input_features
73
-
74
- # if task == "translate":
75
-
76
- # # Detect Language
77
- # lang = detect_language(input_features)
78
- # with open('languages.pkl', 'rb') as f:
79
- # lang_dict = pickle.load(f)
80
- # detected_language = lang_dict[lang]
81
-
82
- # # Set decoder & Predict translation
83
- # forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language, task="translate")
84
- # predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
85
- # else:
86
- # predicted_ids = model.generate(input_features)
87
- # # decode token ids to text
88
- # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
89
- # for i in range(len(transcription)):
90
- # st.write(transcription[i])
91
- # # print(waveform, sampling_rate)
92
- # # Run transcription function and display
93
- # # import pdb;pdb.set_trace()
94
- # # st.write(audio_data.getvalue())
95
-
96
 
97
 
 
98
  if submit_button and uploaded_files is not None:
99
- # Initialize a list to store detected languages
100
- detected_languages = []
101
 
102
  for uploaded_file in uploaded_files:
103
- # Read the uploaded file data
104
  waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
105
-
106
- # Resample if necessary
107
  if sampling_rate != SAMPLING_RATE:
108
  waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
109
 
110
- # Detect language
111
- detected_language = detect_language(waveform, SAMPLING_RATE)
112
- detected_languages.append(detected_language)
113
 
114
- # Display each uploaded file with its detected language and an audio player
115
- for i, uploaded_file in enumerate(uploaded_files):
116
- col1, col2 = st.columns([1, 3]) # Two columns, one for the player, one for the buttons
 
117
 
118
  with col1:
119
  st.write(f"**File name**: {uploaded_file.name}")
120
- st.audio(BytesIO(uploaded_file.getvalue()), format=uploaded_file.type)
121
- st.write(f"**Detected Language**: {detected_languages[i]}")
122
 
123
  with col2:
124
- # Add Transcription and Translation buttons
 
 
125
  if st.button(f"Transcribe {uploaded_file.name}"):
126
- # Transcription process
127
- input_features = processor(waveform[0], sampling_rate=SAMPLING_RATE, return_tensors='pt').input_features
128
  predicted_ids = model.generate(input_features)
129
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
130
- for line in transcription:
 
 
 
 
131
  st.write(line)
132
 
133
  if st.button(f"Translate {uploaded_file.name}"):
134
- # Translation process
135
  with open('languages.pkl', 'rb') as f:
136
  lang_dict = pickle.load(f)
137
- detected_language_name = lang_dict[detected_languages[i]]
138
 
139
  forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language_name, task="translate")
140
  predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
141
  translation = processor.batch_decode(predicted_ids, skip_special_tokens=True)
142
- for line in translation:
 
 
 
 
143
  st.write(line)
 
5
  import torchaudio as ta
6
 
7
  from io import BytesIO
8
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
9
 
10
+ # Set up device and dtype
11
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
+ torch_dtype = torch.float16 if device == "cuda:0" else torch.float32
 
 
 
13
 
14
+ SAMPLING_RATE = 16000
 
15
 
16
+ # Load Whisper model and processor
 
 
17
  processor = WhisperProcessor.from_pretrained("openai/whisper-small")
18
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
19
 
 
25
  uploaded_files = st.sidebar.file_uploader("Choose audio files", type=["mp3", "wav"], accept_multiple_files=True)
26
  submit_button = st.sidebar.button("Submit")
27
 
28
+ # Session state to hold data
29
+ if 'audio_files' not in st.session_state:
30
+ st.session_state.audio_files = []
31
+ st.session_state.transcriptions = {}
32
+ st.session_state.translations = {}
33
+ st.session_state.detected_languages = []
34
+ st.session_state.waveforms = []
35
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  def detect_language(audio_file):
38
+ whisper_model = whisper.load_model("small")
39
+ trimmed_audio = whisper.pad_or_trim(audio_file)
40
  mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
41
+ _, probs = whisper_model.detect_language(mel[0])
42
+ detected_lang = max(probs, key=probs.get)
43
+ print(f"Detected language: {detected_lang}")
44
+ return detected_lang
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
 
47
+ # Process uploaded files
48
  if submit_button and uploaded_files is not None:
49
+ st.session_state.audio_files = uploaded_files
50
+ st.session_state.detected_languages = []
51
 
52
  for uploaded_file in uploaded_files:
 
53
  waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
 
 
54
  if sampling_rate != SAMPLING_RATE:
55
  waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
56
 
57
+ st.session_state.waveforms.append(waveform)
58
+ detected_language = detect_language(waveform)
59
+ st.session_state.detected_languages.append(detected_language)
60
 
61
+ # Display uploaded files and options
62
+ if 'audio_files' in st.session_state and st.session_state.audio_files:
63
+ for i, uploaded_file in enumerate(st.session_state.audio_files):
64
+ col1, col2 = st.columns([1, 3])
65
 
66
  with col1:
67
  st.write(f"**File name**: {uploaded_file.name}")
68
+ st.audio(BytesIO(uploaded_file.read()), format=uploaded_file.type)
69
+ st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
70
 
71
  with col2:
72
+ # import pdb;pdb.set_trace()
73
+ input_features = processor(st.session_state.waveforms[i][0], sampling_rate=SAMPLING_RATE, return_tensors='pt').input_features
74
+
75
  if st.button(f"Transcribe {uploaded_file.name}"):
 
 
76
  predicted_ids = model.generate(input_features)
77
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
78
+ st.session_state.transcriptions[i] = transcription
79
+
80
+ if st.session_state.transcriptions.get(i):
81
+ st.write("**Transcription**:")
82
+ for line in st.session_state.transcriptions[i]:
83
  st.write(line)
84
 
85
  if st.button(f"Translate {uploaded_file.name}"):
 
86
  with open('languages.pkl', 'rb') as f:
87
  lang_dict = pickle.load(f)
88
+ detected_language_name = lang_dict[st.session_state.detected_languages[i]]
89
 
90
  forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language_name, task="translate")
91
  predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
92
  translation = processor.batch_decode(predicted_ids, skip_special_tokens=True)
93
+ st.session_state.translations[i] = translation
94
+
95
+ if st.session_state.translations.get(i):
96
+ st.write("**Translation**:")
97
+ for line in st.session_state.translations[i]:
98
  st.write(line)