DeepDanbooru / app.py
cc1234's picture
Update image_paths in app.py
320a3a1
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import tarfile
import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
path = huggingface_hub.hf_hub_download(
'public-data/sample-images-TADNE',
'images.tar.gz',
repo_type='dataset')
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model() -> tf.keras.Model:
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
'model-resnet_custom_v3.h5')
model = tf.keras.models.load_model(path)
return model
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
'tags.txt')
with open(path) as f:
labels = [line.strip() for line in f.readlines()]
return labels
model = load_model()
labels = load_labels()
skip = ["rating:safe",
"rating:questionable",
"rating:explicit",
"3d",
"photorealistic",
"realistic",
"uncensored"]
translate = {'yuri': 'lesbian', 'paizuri': 'tit job'}
def predict(
image: PIL.Image.Image, score_threshold: float
) -> tuple[dict[str, float], dict[str, float], str]:
_, height, width, _ = model.input_shape
image = np.asarray(image)
image = tf.image.resize(image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True)
image = image.numpy()
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.
probs = model.predict(image[None, ...])[0]
probs = probs.astype(float)
indices = np.argsort(probs)[::-1]
result_all = dict()
result_threshold = dict()
for index in indices:
label = labels[index]
print(label)
prob = probs[index]
if label in skip:
print("skip", label)
continue
if label in translate:
label = translate[label]
result_all[label] = prob
if prob < score_threshold:
break
result_threshold[label] = prob
result_text = ', '.join(result_all.keys())
return result_threshold, result_all, result_text
image_paths = load_sample_image_paths()[:2]
examples = [[path.as_posix(), 0.5] for path in image_paths]
with gr.Blocks(css='style.css') as demo:
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='pil')
score_threshold = gr.Slider(label='Score threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5)
run_button = gr.Button('Run')
with gr.Column():
with gr.Tabs():
with gr.Tab(label='Output'):
result = gr.Label(label='Output', show_label=False)
with gr.Tab(label='JSON'):
result_json = gr.JSON(label='JSON output',
show_label=False)
with gr.Tab(label='Text'):
result_text = gr.Text(label='Text output',
show_label=False,
lines=5)
gr.Examples(examples=examples,
inputs=[image, score_threshold],
outputs=[result, result_json, result_text],
fn=predict,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
run_button.click(
fn=predict,
inputs=[image, score_threshold],
outputs=[result, result_json, result_text],
api_name='predict',
)
demo.queue().launch()