Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import pathlib | |
| import tarfile | |
| import deepdanbooru as dd | |
| import gradio as gr | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import tensorflow as tf | |
| def load_sample_image_paths() -> list[pathlib.Path]: | |
| image_dir = pathlib.Path('images') | |
| if not image_dir.exists(): | |
| path = huggingface_hub.hf_hub_download( | |
| 'public-data/sample-images-TADNE', | |
| 'images.tar.gz', | |
| repo_type='dataset') | |
| with tarfile.open(path) as f: | |
| f.extractall() | |
| return sorted(image_dir.glob('*')) | |
| def load_model() -> tf.keras.Model: | |
| path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
| 'model-resnet_custom_v3.h5') | |
| model = tf.keras.models.load_model(path) | |
| return model | |
| def load_labels() -> list[str]: | |
| path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
| 'tags.txt') | |
| with open(path) as f: | |
| labels = [line.strip() for line in f.readlines()] | |
| return labels | |
| model = load_model() | |
| labels = load_labels() | |
| skip = ["rating:safe", | |
| "rating:questionable", | |
| "rating:explicit", | |
| "3d", | |
| "photorealistic", | |
| "realistic", | |
| "uncensored"] | |
| translate = {'yuri': 'lesbian', 'paizuri': 'tit job'} | |
| def predict( | |
| image: PIL.Image.Image, score_threshold: float | |
| ) -> tuple[dict[str, float], dict[str, float], str]: | |
| _, height, width, _ = model.input_shape | |
| image = np.asarray(image) | |
| image = tf.image.resize(image, | |
| size=(height, width), | |
| method=tf.image.ResizeMethod.AREA, | |
| preserve_aspect_ratio=True) | |
| image = image.numpy() | |
| image = dd.image.transform_and_pad_image(image, width, height) | |
| image = image / 255. | |
| probs = model.predict(image[None, ...])[0] | |
| probs = probs.astype(float) | |
| indices = np.argsort(probs)[::-1] | |
| result_all = dict() | |
| result_threshold = dict() | |
| for index in indices: | |
| label = labels[index] | |
| print(label) | |
| prob = probs[index] | |
| if label in skip: | |
| print("skip", label) | |
| continue | |
| if label in translate: | |
| label = translate[label] | |
| result_all[label] = prob | |
| if prob < score_threshold: | |
| break | |
| result_threshold[label] = prob | |
| result_text = ', '.join(result_all.keys()) | |
| return result_threshold, result_all, result_text | |
| image_paths = load_sample_image_paths()[:2] | |
| examples = [[path.as_posix(), 0.5] for path in image_paths] | |
| with gr.Blocks(css='style.css') as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label='Input', type='pil') | |
| score_threshold = gr.Slider(label='Score threshold', | |
| minimum=0, | |
| maximum=1, | |
| step=0.05, | |
| value=0.5) | |
| run_button = gr.Button('Run') | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.Tab(label='Output'): | |
| result = gr.Label(label='Output', show_label=False) | |
| with gr.Tab(label='JSON'): | |
| result_json = gr.JSON(label='JSON output', | |
| show_label=False) | |
| with gr.Tab(label='Text'): | |
| result_text = gr.Text(label='Text output', | |
| show_label=False, | |
| lines=5) | |
| gr.Examples(examples=examples, | |
| inputs=[image, score_threshold], | |
| outputs=[result, result_json, result_text], | |
| fn=predict, | |
| cache_examples=os.getenv('CACHE_EXAMPLES') == '1') | |
| run_button.click( | |
| fn=predict, | |
| inputs=[image, score_threshold], | |
| outputs=[result, result_json, result_text], | |
| api_name='predict', | |
| ) | |
| demo.queue().launch() | |