import gradio as gr | |
import pandas as pd | |
import faiss | |
import numpy as np | |
import os | |
from FlagEmbedding import BGEM3FlagModel | |
# Load the pre-trained embedding model | |
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) | |
# Load the JSON data into a DataFrame | |
df = pd.read_json('White-Stride-Red-68.json') | |
df['embeding_context'] = df['embeding_context'].astype(str).fillna('') | |
# Filter out any rows where 'embeding_context' might be empty or invalid | |
df = df[df['embeding_context'] != ''] | |
# # Encode the 'embeding_context' column | |
# embedding_contexts = df['embeding_context'].tolist() | |
# embeddings_csv = model.encode(embedding_contexts, batch_size=12, max_length=1024)['dense_vecs'] | |
# # Convert embeddings to numpy array | |
# embeddings_np = np.array(embeddings_csv).astype('float32') | |
# # FAISS index file path | |
# index_file_path = 'vector_store_bge_m3.index' | |
# # Check if FAISS index file already exists | |
# if os.path.exists(index_file_path): | |
# # Load the existing FAISS index from file | |
# index = faiss.read_index(index_file_path) | |
# print("FAISS index loaded from file.") | |
# else: | |
# # Initialize FAISS index (for L2 similarity) | |
# dim = embeddings_np.shape[1] | |
# index = faiss.IndexFlatL2(dim) | |
# # Add embeddings to the FAISS index | |
# index.add(embeddings_np) | |
# # Save the FAISS index to a file for future use | |
# faiss.write_index(index, index_file_path) | |
# print("FAISS index created and saved to file.") | |
index = faiss.read_index('vector_store_bge_m3.index') | |
# Function to perform search and return all columns | |
def search_query(query_text): | |
num_records = 50 | |
# Encode the input query text | |
embeddings_query = model.encode([query_text], batch_size=12, max_length=1024)['dense_vecs'] | |
embeddings_query_np = np.array(embeddings_query).astype('float32') | |
# Search in FAISS index for nearest neighbors | |
distances, indices = index.search(embeddings_query_np, num_records) | |
# Get the top results based on FAISS indices | |
result_df = df.iloc[indices[0]].drop(columns=['embeding_context']).drop_duplicates().reset_index(drop=True) | |
return result_df | |
# Gradio interface function | |
def gradio_interface(query_text): | |
search_results = search_query(query_text) | |
return search_results | |
with gr.Blocks() as app: | |
gr.Markdown("<h1>White Stride Red Search (BEG-M3)</h1>") | |
# Input text box for the search query | |
search_input = gr.Textbox(label="Search Query", placeholder="Enter search text", interactive=True) | |
# Search button below the text box | |
search_button = gr.Button("Search") | |
# Output table for displaying results | |
search_output = gr.DataFrame(label="Search Results") | |
# Link button click to action | |
search_button.click(fn=gradio_interface, inputs=search_input, outputs=search_output) | |
# Launch the Gradio app | |
app.launch() | |