stakelovelace commited on
Commit
1de88e7
1 Parent(s): 227e573
Files changed (2) hide show
  1. app.py +10 -5
  2. results/config.json +28 -0
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
3
  from datasets import Dataset
4
  import pandas as pd
5
  import csv
@@ -74,14 +74,19 @@ def train_model(model, tokenizer, data, device):
74
  def main(api_name, base_url):
75
  device = get_device() # Get the appropriate device
76
  data = load_data_and_config("train2.csv")
77
- tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
 
 
 
 
 
78
  # Load the configuration for a specific model
79
- config = AutoConfig.from_pretrained('google/codegemma-2b')
80
  # Update the activation function
81
  # config.hidden_act = '' # Set to use approximate GeLU gelu_pytorch_tanh
82
- config.hidden_activation = 'gelu_pytorch_tanh' # Set to use GeLU
83
 
84
- model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
85
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
86
  # Example assuming you have a prepared dataset for classification
87
  #model = BertForSequenceClassification.from_pretrained('thenlper/gte-small', num_labels=2, is_decoder=True) # binary classification
 
1
  import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaTokenizer, AutoConfig, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
3
  from datasets import Dataset
4
  import pandas as pd
5
  import csv
 
74
  def main(api_name, base_url):
75
  device = get_device() # Get the appropriate device
76
  data = load_data_and_config("train2.csv")
77
+
78
+ model_id = "google/codegemma-2b"
79
+ tokenizer = GemmaTokenizer.from_pretrained(model_id)
80
+ model = AutoModelForCausalLM.from_pretrained(model_id)
81
+
82
+ #tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
83
  # Load the configuration for a specific model
84
+ # config = AutoConfig.from_pretrained('google/codegemma-2b')
85
  # Update the activation function
86
  # config.hidden_act = '' # Set to use approximate GeLU gelu_pytorch_tanh
87
+ # config.hidden_activation = 'gelu_pytorch_tanh' # Set to use GeLU
88
 
89
+ # model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
90
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
91
  # Example assuming you have a prepared dataset for classification
92
  #model = BertForSequenceClassification.from_pretrained('thenlper/gte-small', num_labels=2, is_decoder=True) # binary classification
results/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/codegemma-2b",
3
+ "architectures": [
4
+ "GemmaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 2,
9
+ "eos_token_id": 1,
10
+ "head_dim": 256,
11
+ "hidden_activation": "gelu_pytorch_tanh",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 16384,
15
+ "is_decoder": true,
16
+ "max_position_embeddings": 8192,
17
+ "model_type": "gemma",
18
+ "num_attention_heads": 8,
19
+ "num_hidden_layers": 18,
20
+ "num_key_value_heads": 1,
21
+ "pad_token_id": 0,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_theta": 10000.0,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.40.1",
26
+ "use_cache": true,
27
+ "vocab_size": 256000
28
+ }