Spaces:
Running
on
Zero
Running
on
Zero
from typing import overload, Tuple | |
import torch | |
from torch.nn import functional as F | |
class Guidance: | |
def __init__(self, scale: float, t_start: int, t_stop: int, space: str, repeat: int) -> "Guidance": | |
""" | |
Initialize restoration guidance. | |
Args: | |
scale (float): Gradient scale (denoted as `s` in our paper). The larger the gradient scale, | |
the closer the final result will be to the output of the first stage model. | |
t_start (int), t_stop (int): The timestep to start or stop guidance. Note that the sampling | |
process starts from t=1000 to t=0, the `t_start` should be larger than `t_stop`. | |
space (str): The data space for computing loss function (rgb or latent). | |
Our restoration guidance is based on [GDP](https://github.com/Fayeben/GenerativeDiffusionPrior). | |
Thanks for their work! | |
""" | |
self.scale = scale * 3000 | |
self.t_start = t_start | |
self.t_stop = t_stop | |
self.target = None | |
self.space = space | |
self.repeat = repeat | |
def load_target(self, target: torch.Tensor) -> None: | |
self.target = target | |
def __call__(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: | |
# avoid propagating gradient out of this scope | |
pred_x0 = pred_x0.detach().clone() | |
target_x0 = target_x0.detach().clone() | |
return self._forward(target_x0, pred_x0, t) | |
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: | |
... | |
class MSEGuidance(Guidance): | |
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: | |
# inputs: [-1, 1], nchw, rgb | |
with torch.enable_grad(): | |
pred_x0.requires_grad_(True) | |
loss = (pred_x0 - target_x0).pow(2).mean((1, 2, 3)).sum() | |
scale = self.scale | |
g = -torch.autograd.grad(loss, pred_x0)[0] * scale | |
return g, loss.item() | |
class WeightedMSEGuidance(Guidance): | |
def _get_weight(self, target: torch.Tensor) -> torch.Tensor: | |
# convert RGB to G | |
rgb_to_gray_kernel = torch.tensor([0.2989, 0.5870, 0.1140]).view(1, 3, 1, 1) | |
target = torch.sum(target * rgb_to_gray_kernel.to(target.device), dim=1, keepdim=True) | |
# initialize sobel kernel in x and y axis | |
G_x = [ | |
[1, 0, -1], | |
[2, 0, -2], | |
[1, 0, -1] | |
] | |
G_y = [ | |
[1, 2, 1], | |
[0, 0, 0], | |
[-1, -2, -1] | |
] | |
G_x = torch.tensor(G_x, dtype=target.dtype, device=target.device)[None] | |
G_y = torch.tensor(G_y, dtype=target.dtype, device=target.device)[None] | |
G = torch.stack((G_x, G_y)) | |
target = F.pad(target, (1, 1, 1, 1), mode='replicate') # padding = 1 | |
grad = F.conv2d(target, G, stride=1) | |
mag = grad.pow(2).sum(dim=1, keepdim=True).sqrt() | |
n, c, h, w = mag.size() | |
block_size = 2 | |
blocks = mag.view(n, c, h // block_size, block_size, w // block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() | |
block_mean = blocks.sum(dim=(-2, -1), keepdim=True).tanh().repeat(1, 1, 1, 1, block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() | |
block_mean = block_mean.view(n, c, h, w) | |
weight_map = 1 - block_mean | |
return weight_map | |
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: | |
# inputs: [-1, 1], nchw, rgb | |
with torch.no_grad(): | |
w = self._get_weight((target_x0 + 1) / 2) | |
with torch.enable_grad(): | |
pred_x0.requires_grad_(True) | |
loss = ((pred_x0 - target_x0).pow(2) * w).mean((1, 2, 3)).sum() | |
scale = self.scale | |
g = -torch.autograd.grad(loss, pred_x0)[0] * scale | |
return g, loss.item() | |