DiffIR2VR / utils /cond_fn.py
jimmycv07's picture
first commit
1de8821
raw
history blame
3.94 kB
from typing import overload, Tuple
import torch
from torch.nn import functional as F
class Guidance:
def __init__(self, scale: float, t_start: int, t_stop: int, space: str, repeat: int) -> "Guidance":
"""
Initialize restoration guidance.
Args:
scale (float): Gradient scale (denoted as `s` in our paper). The larger the gradient scale,
the closer the final result will be to the output of the first stage model.
t_start (int), t_stop (int): The timestep to start or stop guidance. Note that the sampling
process starts from t=1000 to t=0, the `t_start` should be larger than `t_stop`.
space (str): The data space for computing loss function (rgb or latent).
Our restoration guidance is based on [GDP](https://github.com/Fayeben/GenerativeDiffusionPrior).
Thanks for their work!
"""
self.scale = scale * 3000
self.t_start = t_start
self.t_stop = t_stop
self.target = None
self.space = space
self.repeat = repeat
def load_target(self, target: torch.Tensor) -> None:
self.target = target
def __call__(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]:
# avoid propagating gradient out of this scope
pred_x0 = pred_x0.detach().clone()
target_x0 = target_x0.detach().clone()
return self._forward(target_x0, pred_x0, t)
@overload
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]:
...
class MSEGuidance(Guidance):
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]:
# inputs: [-1, 1], nchw, rgb
with torch.enable_grad():
pred_x0.requires_grad_(True)
loss = (pred_x0 - target_x0).pow(2).mean((1, 2, 3)).sum()
scale = self.scale
g = -torch.autograd.grad(loss, pred_x0)[0] * scale
return g, loss.item()
class WeightedMSEGuidance(Guidance):
def _get_weight(self, target: torch.Tensor) -> torch.Tensor:
# convert RGB to G
rgb_to_gray_kernel = torch.tensor([0.2989, 0.5870, 0.1140]).view(1, 3, 1, 1)
target = torch.sum(target * rgb_to_gray_kernel.to(target.device), dim=1, keepdim=True)
# initialize sobel kernel in x and y axis
G_x = [
[1, 0, -1],
[2, 0, -2],
[1, 0, -1]
]
G_y = [
[1, 2, 1],
[0, 0, 0],
[-1, -2, -1]
]
G_x = torch.tensor(G_x, dtype=target.dtype, device=target.device)[None]
G_y = torch.tensor(G_y, dtype=target.dtype, device=target.device)[None]
G = torch.stack((G_x, G_y))
target = F.pad(target, (1, 1, 1, 1), mode='replicate') # padding = 1
grad = F.conv2d(target, G, stride=1)
mag = grad.pow(2).sum(dim=1, keepdim=True).sqrt()
n, c, h, w = mag.size()
block_size = 2
blocks = mag.view(n, c, h // block_size, block_size, w // block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous()
block_mean = blocks.sum(dim=(-2, -1), keepdim=True).tanh().repeat(1, 1, 1, 1, block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous()
block_mean = block_mean.view(n, c, h, w)
weight_map = 1 - block_mean
return weight_map
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]:
# inputs: [-1, 1], nchw, rgb
with torch.no_grad():
w = self._get_weight((target_x0 + 1) / 2)
with torch.enable_grad():
pred_x0.requires_grad_(True)
loss = ((pred_x0 - target_x0).pow(2) * w).mean((1, 2, 3)).sum()
scale = self.scale
g = -torch.autograd.grad(loss, pred_x0)[0] * scale
return g, loss.item()