DiffIR2VR / model /util.py
jimmycv07's picture
first commit
1de8821
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!
import os
import math
from inspect import isfunction
import torch
import torch.nn as nn
import numpy as np
from einops import repeat
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
# class CheckpointFunction(torch.autograd.Function):
# @staticmethod
# def forward(ctx, run_function, length, *args):
# ctx.run_function = run_function
# ctx.input_tensors = list(args[:length])
# ctx.input_params = list(args[length:])
# ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
# "dtype": torch.get_autocast_gpu_dtype(),
# "cache_enabled": torch.is_autocast_cache_enabled()}
# with torch.no_grad():
# output_tensors = ctx.run_function(*ctx.input_tensors)
# return output_tensors
# @staticmethod
# def backward(ctx, *output_grads):
# ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
# with torch.enable_grad(), \
# torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
# # Fixes a bug where the first op in run_function modifies the
# # Tensor storage in place, which is not allowed for detach()'d
# # Tensors.
# shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
# output_tensors = ctx.run_function(*shallow_copies)
# input_grads = torch.autograd.grad(
# output_tensors,
# ctx.input_tensors + ctx.input_params,
# output_grads,
# allow_unused=True,
# )
# del ctx.input_tensors
# del ctx.input_params
# del output_tensors
# return (None, None) + input_grads
# Fixes: When we set unet parameters with requires_grad=False, the original CheckpointFunction
# still tries to compute gradient for unet parameters.
# https://discuss.pytorch.org/t/get-runtimeerror-one-of-the-differentiated-tensors-does-not-require-grad-in-pytorch-lightning/179738/6
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled()}
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad(), \
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + [x for x in ctx.input_params if x.requires_grad],
output_grads,
allow_unused=True,
)
grads = list(grads)
# Assign gradients to the correct positions, matching None for those that do not require gradients
input_grads = []
for tensor in ctx.input_tensors + ctx.input_params:
if tensor.requires_grad:
input_grads.append(grads.pop(0)) # Get the next computed gradient
else:
input_grads.append(None) # No gradient required for this tensor
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + tuple(input_grads)
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim)
return embedding
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels)
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")