jimmycv07's picture
first commit
1de8821
import torch
import torch.nn.functional as F
class InputPadder:
""" Pads images such that dimensions are divisible by 8 """
def __init__(self, dims, mode='sintel', padding_factor=8):
self.ht, self.wd = dims[-2:]
pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor
pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor
if mode == 'sintel':
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2]
else:
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht]
def pad(self, *inputs):
return [F.pad(x, self._pad, mode='replicate') for x in inputs]
def unpad(self, x):
ht, wd = x.shape[-2:]
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
return x[..., c[0]:c[1], c[2]:c[3]]
def coords_grid(batch, ht, wd, normalize=False):
if normalize: # [-1, 1]
coords = torch.meshgrid(2 * torch.arange(ht) / (ht - 1) - 1,
2 * torch.arange(wd) / (wd - 1) - 1)
else:
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch, 1, 1, 1) # [B, 2, H, W]
def compute_out_of_boundary_mask(flow):
# flow: [B, 2, H, W]
assert flow.dim() == 4 and flow.size(1) == 2
b, _, h, w = flow.shape
init_coords = coords_grid(b, h, w).to(flow.device)
corres = init_coords + flow # [B, 2, H, W]
max_w = w - 1
max_h = h - 1
valid_mask = (corres[:, 0] >= 0) & (corres[:, 0] <= max_w) & (corres[:, 1] >= 0) & (corres[:, 1] <= max_h)
# in case very large flow
flow_mask = (flow[:, 0].abs() <= max_w) & (flow[:, 1].abs() <= max_h)
valid_mask = valid_mask & flow_mask
return valid_mask # [B, H, W]
def count_parameters(model):
num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return num