Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
import os | |
import torch | |
from torchvision.transforms.functional import normalize | |
from facexlib.detection import init_detection_model | |
from facexlib.parsing import init_parsing_model | |
from facexlib.utils.misc import img2tensor, imwrite | |
from utils.common import load_file_from_url | |
def get_largest_face(det_faces, h, w): | |
def get_location(val, length): | |
if val < 0: | |
return 0 | |
elif val > length: | |
return length | |
else: | |
return val | |
face_areas = [] | |
for det_face in det_faces: | |
left = get_location(det_face[0], w) | |
right = get_location(det_face[2], w) | |
top = get_location(det_face[1], h) | |
bottom = get_location(det_face[3], h) | |
face_area = (right - left) * (bottom - top) | |
face_areas.append(face_area) | |
largest_idx = face_areas.index(max(face_areas)) | |
return det_faces[largest_idx], largest_idx | |
def get_center_face(det_faces, h=0, w=0, center=None): | |
if center is not None: | |
center = np.array(center) | |
else: | |
center = np.array([w / 2, h / 2]) | |
center_dist = [] | |
for det_face in det_faces: | |
face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) | |
dist = np.linalg.norm(face_center - center) | |
center_dist.append(dist) | |
center_idx = center_dist.index(min(center_dist)) | |
return det_faces[center_idx], center_idx | |
class FaceRestoreHelper(object): | |
"""Helper for the face restoration pipeline (base class).""" | |
def __init__(self, | |
upscale_factor, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
template_3points=False, | |
pad_blur=False, | |
use_parse=False, | |
device=None): | |
self.template_3points = template_3points # improve robustness | |
self.upscale_factor = int(upscale_factor) | |
# the cropped face ratio based on the square face | |
self.crop_ratio = crop_ratio # (h, w) | |
assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1' | |
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0])) | |
self.det_model = det_model | |
if self.det_model == 'dlib': | |
# standard 5 landmarks for FFHQ faces with 1024 x 1024 | |
self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941], | |
[337.91089109, 488.38613861], [437.95049505, 493.51485149], | |
[513.58415842, 678.5049505]]) | |
self.face_template = self.face_template / (1024 // face_size) | |
elif self.template_3points: | |
self.face_template = np.array([[192, 240], [319, 240], [257, 371]]) | |
else: | |
# standard 5 landmarks for FFHQ faces with 512 x 512 | |
# facexlib | |
self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], | |
[201.26117, 371.41043], [313.08905, 371.15118]]) | |
# dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54 | |
# self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894], | |
# [198.22603, 372.82502], [313.91018, 372.75659]]) | |
self.face_template = self.face_template * (face_size / 512.0) | |
if self.crop_ratio[0] > 1: | |
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2 | |
if self.crop_ratio[1] > 1: | |
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2 | |
self.save_ext = save_ext | |
self.pad_blur = pad_blur | |
if self.pad_blur is True: | |
self.template_3points = False | |
self.all_landmarks_5 = [] | |
self.det_faces = [] | |
self.affine_matrices = [] | |
self.inverse_affine_matrices = [] | |
self.cropped_faces = [] | |
self.restored_faces = [] | |
self.pad_input_imgs = [] | |
if device is None: | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# self.device = get_device() | |
else: | |
self.device = device | |
# init face detection model | |
self.face_detector = init_detection_model(det_model, half=False, device=self.device) | |
# init face parsing model | |
self.use_parse = use_parse | |
self.face_parse = init_parsing_model(model_name='parsenet', device=self.device) | |
def set_upscale_factor(self, upscale_factor): | |
self.upscale_factor = upscale_factor | |
def read_image(self, img): | |
"""img can be image path or cv2 loaded image.""" | |
# self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255] | |
if isinstance(img, str): | |
img = cv2.imread(img) | |
if np.max(img) > 256: # 16-bit image | |
img = img / 65535 * 255 | |
if len(img.shape) == 2: # gray image | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
elif img.shape[2] == 4: # BGRA image with alpha channel | |
img = img[:, :, 0:3] | |
self.input_img = img | |
# self.is_gray = is_gray(img, threshold=10) | |
# if self.is_gray: | |
# print('Grayscale input: True') | |
if min(self.input_img.shape[:2])<512: | |
f = 512.0/min(self.input_img.shape[:2]) | |
self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR) | |
def init_dlib(self, detection_path, landmark5_path): | |
"""Initialize the dlib detectors and predictors.""" | |
try: | |
import dlib | |
except ImportError: | |
print('Please install dlib by running:' 'conda install -c conda-forge dlib') | |
detection_path = load_file_from_url(url=detection_path, model_dir='weights/dlib', progress=True, file_name=None) | |
landmark5_path = load_file_from_url(url=landmark5_path, model_dir='weights/dlib', progress=True, file_name=None) | |
face_detector = dlib.cnn_face_detection_model_v1(detection_path) | |
shape_predictor_5 = dlib.shape_predictor(landmark5_path) | |
return face_detector, shape_predictor_5 | |
def get_face_landmarks_5_dlib(self, | |
only_keep_largest=False, | |
scale=1): | |
det_faces = self.face_detector(self.input_img, scale) | |
if len(det_faces) == 0: | |
print('No face detected. Try to increase upsample_num_times.') | |
return 0 | |
else: | |
if only_keep_largest: | |
print('Detect several faces and only keep the largest.') | |
face_areas = [] | |
for i in range(len(det_faces)): | |
face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * ( | |
det_faces[i].rect.bottom() - det_faces[i].rect.top()) | |
face_areas.append(face_area) | |
largest_idx = face_areas.index(max(face_areas)) | |
self.det_faces = [det_faces[largest_idx]] | |
else: | |
self.det_faces = det_faces | |
if len(self.det_faces) == 0: | |
return 0 | |
for face in self.det_faces: | |
shape = self.shape_predictor_5(self.input_img, face.rect) | |
landmark = np.array([[part.x, part.y] for part in shape.parts()]) | |
self.all_landmarks_5.append(landmark) | |
return len(self.all_landmarks_5) | |
def get_face_landmarks_5(self, | |
only_keep_largest=False, | |
only_center_face=False, | |
resize=None, | |
blur_ratio=0.01, | |
eye_dist_threshold=None): | |
if self.det_model == 'dlib': | |
return self.get_face_landmarks_5_dlib(only_keep_largest) | |
if resize is None: | |
scale = 1 | |
input_img = self.input_img | |
else: | |
h, w = self.input_img.shape[0:2] | |
scale = resize / min(h, w) | |
scale = max(1, scale) # always scale up | |
h, w = int(h * scale), int(w * scale) | |
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR | |
input_img = cv2.resize(self.input_img, (w, h), interpolation=interp) | |
with torch.no_grad(): | |
bboxes = self.face_detector.detect_faces(input_img) | |
if bboxes is None or bboxes.shape[0] == 0: | |
return 0 | |
else: | |
bboxes = bboxes / scale | |
for bbox in bboxes: | |
# remove faces with too small eye distance: side faces or too small faces | |
eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]]) | |
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold): | |
continue | |
if self.template_3points: | |
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) | |
else: | |
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) | |
self.all_landmarks_5.append(landmark) | |
self.det_faces.append(bbox[0:5]) | |
if len(self.det_faces) == 0: | |
return 0 | |
if only_keep_largest: | |
h, w, _ = self.input_img.shape | |
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w) | |
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]] | |
elif only_center_face: | |
h, w, _ = self.input_img.shape | |
self.det_faces, center_idx = get_center_face(self.det_faces, h, w) | |
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]] | |
# pad blurry images | |
if self.pad_blur: | |
self.pad_input_imgs = [] | |
for landmarks in self.all_landmarks_5: | |
# get landmarks | |
eye_left = landmarks[0, :] | |
eye_right = landmarks[1, :] | |
eye_avg = (eye_left + eye_right) * 0.5 | |
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
eye_to_mouth = mouth_avg - eye_avg | |
# Get the oriented crop rectangle | |
# x: half width of the oriented crop rectangle | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise | |
# norm with the hypotenuse: get the direction | |
x /= np.hypot(*x) # get the hypotenuse of a right triangle | |
rect_scale = 1.5 | |
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) | |
# y: half height of the oriented crop rectangle | |
y = np.flipud(x) * [-1, 1] | |
# c: center | |
c = eye_avg + eye_to_mouth * 0.1 | |
# quad: (left_top, left_bottom, right_bottom, right_top) | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
# qsize: side length of the square | |
qsize = np.hypot(*x) * 2 | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
# get pad | |
# pad: (width_left, height_top, width_right, height_bottom) | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = [ | |
max(-pad[0] + border, 1), | |
max(-pad[1] + border, 1), | |
max(pad[2] - self.input_img.shape[0] + border, 1), | |
max(pad[3] - self.input_img.shape[1] + border, 1) | |
] | |
if max(pad) > 1: | |
# pad image | |
pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
# modify landmark coords | |
landmarks[:, 0] += pad[0] | |
landmarks[:, 1] += pad[1] | |
# blur pad images | |
h, w, _ = pad_img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], | |
np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], | |
np.float32(h - 1 - y) / pad[3])) | |
blur = int(qsize * blur_ratio) | |
if blur % 2 == 0: | |
blur += 1 | |
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur)) | |
# blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0) | |
pad_img = pad_img.astype('float32') | |
pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0) | |
pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255] | |
self.pad_input_imgs.append(pad_img) | |
else: | |
self.pad_input_imgs.append(np.copy(self.input_img)) | |
return len(self.all_landmarks_5) | |
def align_warp_face(self, save_cropped_path=None, border_mode='constant'): | |
"""Align and warp faces with face template. | |
""" | |
if self.pad_blur: | |
assert len(self.pad_input_imgs) == len( | |
self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}' | |
for idx, landmark in enumerate(self.all_landmarks_5): | |
# use 5 landmarks to get affine matrix | |
# use cv2.LMEDS method for the equivalence to skimage transform | |
# ref: https://blog.csdn.net/yichxi/article/details/115827338 | |
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0] | |
self.affine_matrices.append(affine_matrix) | |
# warp and crop faces | |
if border_mode == 'constant': | |
border_mode = cv2.BORDER_CONSTANT | |
elif border_mode == 'reflect101': | |
border_mode = cv2.BORDER_REFLECT101 | |
elif border_mode == 'reflect': | |
border_mode = cv2.BORDER_REFLECT | |
if self.pad_blur: | |
input_img = self.pad_input_imgs[idx] | |
else: | |
input_img = self.input_img | |
cropped_face = cv2.warpAffine( | |
input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray | |
self.cropped_faces.append(cropped_face) | |
# save the cropped face | |
if save_cropped_path is not None: | |
path = os.path.splitext(save_cropped_path)[0] | |
save_path = f'{path}_{idx:02d}.{self.save_ext}' | |
imwrite(cropped_face, save_path) | |
def get_inverse_affine(self, save_inverse_affine_path=None): | |
"""Get inverse affine matrix.""" | |
for idx, affine_matrix in enumerate(self.affine_matrices): | |
inverse_affine = cv2.invertAffineTransform(affine_matrix) | |
inverse_affine *= self.upscale_factor | |
self.inverse_affine_matrices.append(inverse_affine) | |
# save inverse affine matrices | |
if save_inverse_affine_path is not None: | |
path, _ = os.path.splitext(save_inverse_affine_path) | |
save_path = f'{path}_{idx:02d}.pth' | |
torch.save(inverse_affine, save_path) | |
def add_restored_face(self, restored_face, input_face=None): | |
# if self.is_gray: | |
# restored_face = bgr2gray(restored_face) # convert img into grayscale | |
# if input_face is not None: | |
# restored_face = adain_npy(restored_face, input_face) # transfer the color | |
self.restored_faces.append(restored_face) | |
def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None): | |
h, w, _ = self.input_img.shape | |
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor) | |
if upsample_img is None: | |
# simply resize the background | |
# upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) | |
upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR) | |
else: | |
upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) | |
assert len(self.restored_faces) == len( | |
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.') | |
inv_mask_borders = [] | |
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices): | |
if face_upsampler is not None: | |
restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0] | |
inverse_affine /= self.upscale_factor | |
inverse_affine[:, 2] *= self.upscale_factor | |
face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor) | |
else: | |
# Add an offset to inverse affine matrix, for more precise back alignment | |
if self.upscale_factor > 1: | |
extra_offset = 0.5 * self.upscale_factor | |
else: | |
extra_offset = 0 | |
inverse_affine[:, 2] += extra_offset | |
face_size = self.face_size | |
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up)) | |
# if draw_box or not self.use_parse: # use square parse maps | |
# mask = np.ones(face_size, dtype=np.float32) | |
# inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) | |
# # remove the black borders | |
# inv_mask_erosion = cv2.erode( | |
# inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) | |
# pasted_face = inv_mask_erosion[:, :, None] * inv_restored | |
# total_face_area = np.sum(inv_mask_erosion) # // 3 | |
# # add border | |
# if draw_box: | |
# h, w = face_size | |
# mask_border = np.ones((h, w, 3), dtype=np.float32) | |
# border = int(1400/np.sqrt(total_face_area)) | |
# mask_border[border:h-border, border:w-border,:] = 0 | |
# inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up)) | |
# inv_mask_borders.append(inv_mask_border) | |
# if not self.use_parse: | |
# # compute the fusion edge based on the area of face | |
# w_edge = int(total_face_area**0.5) // 20 | |
# erosion_radius = w_edge * 2 | |
# inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) | |
# blur_size = w_edge * 2 | |
# inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) | |
# if len(upsample_img.shape) == 2: # upsample_img is gray image | |
# upsample_img = upsample_img[:, :, None] | |
# inv_soft_mask = inv_soft_mask[:, :, None] | |
# always use square mask | |
mask = np.ones(face_size, dtype=np.float32) | |
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) | |
# remove the black borders | |
inv_mask_erosion = cv2.erode( | |
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) | |
pasted_face = inv_mask_erosion[:, :, None] * inv_restored | |
total_face_area = np.sum(inv_mask_erosion) # // 3 | |
# add border | |
if draw_box: | |
h, w = face_size | |
mask_border = np.ones((h, w, 3), dtype=np.float32) | |
border = int(1400/np.sqrt(total_face_area)) | |
mask_border[border:h-border, border:w-border,:] = 0 | |
inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up)) | |
inv_mask_borders.append(inv_mask_border) | |
# compute the fusion edge based on the area of face | |
w_edge = int(total_face_area**0.5) // 20 | |
erosion_radius = w_edge * 2 | |
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) | |
blur_size = w_edge * 2 | |
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) | |
if len(upsample_img.shape) == 2: # upsample_img is gray image | |
upsample_img = upsample_img[:, :, None] | |
inv_soft_mask = inv_soft_mask[:, :, None] | |
# parse mask | |
if self.use_parse: | |
# inference | |
face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR) | |
face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True) | |
normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
face_input = torch.unsqueeze(face_input, 0).to(self.device) | |
with torch.no_grad(): | |
out = self.face_parse(face_input)[0] | |
out = out.argmax(dim=1).squeeze().cpu().numpy() | |
parse_mask = np.zeros(out.shape) | |
MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] | |
for idx, color in enumerate(MASK_COLORMAP): | |
parse_mask[out == idx] = color | |
# blur the mask | |
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11) | |
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11) | |
# remove the black borders | |
thres = 10 | |
parse_mask[:thres, :] = 0 | |
parse_mask[-thres:, :] = 0 | |
parse_mask[:, :thres] = 0 | |
parse_mask[:, -thres:] = 0 | |
parse_mask = parse_mask / 255. | |
parse_mask = cv2.resize(parse_mask, face_size) | |
parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3) | |
inv_soft_parse_mask = parse_mask[:, :, None] | |
# pasted_face = inv_restored | |
fuse_mask = (inv_soft_parse_mask<inv_soft_mask).astype('int') | |
inv_soft_mask = inv_soft_parse_mask*fuse_mask + inv_soft_mask*(1-fuse_mask) | |
if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel | |
alpha = upsample_img[:, :, 3:] | |
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3] | |
upsample_img = np.concatenate((upsample_img, alpha), axis=2) | |
else: | |
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img | |
if np.max(upsample_img) > 256: # 16-bit image | |
upsample_img = upsample_img.astype(np.uint16) | |
else: | |
upsample_img = upsample_img.astype(np.uint8) | |
# draw bounding box | |
if draw_box: | |
# upsample_input_img = cv2.resize(input_img, (w_up, h_up)) | |
img_color = np.ones([*upsample_img.shape], dtype=np.float32) | |
img_color[:,:,0] = 0 | |
img_color[:,:,1] = 255 | |
img_color[:,:,2] = 0 | |
for inv_mask_border in inv_mask_borders: | |
upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img | |
# upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img | |
if save_path is not None: | |
path = os.path.splitext(save_path)[0] | |
save_path = f'{path}.{self.save_ext}' | |
imwrite(upsample_img, save_path) | |
return upsample_img | |
def clean_all(self): | |
self.all_landmarks_5 = [] | |
self.restored_faces = [] | |
self.affine_matrices = [] | |
self.cropped_faces = [] | |
self.inverse_affine_matrices = [] | |
self.det_faces = [] | |
self.pad_input_imgs = [] |