Spaces:
Running
on
Zero
Running
on
Zero
# adopted from | |
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
# and | |
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
# and | |
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
# | |
# thanks! | |
import os | |
import math | |
from inspect import isfunction | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import repeat | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
# class CheckpointFunction(torch.autograd.Function): | |
# @staticmethod | |
# def forward(ctx, run_function, length, *args): | |
# ctx.run_function = run_function | |
# ctx.input_tensors = list(args[:length]) | |
# ctx.input_params = list(args[length:]) | |
# ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), | |
# "dtype": torch.get_autocast_gpu_dtype(), | |
# "cache_enabled": torch.is_autocast_cache_enabled()} | |
# with torch.no_grad(): | |
# output_tensors = ctx.run_function(*ctx.input_tensors) | |
# return output_tensors | |
# @staticmethod | |
# def backward(ctx, *output_grads): | |
# ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
# with torch.enable_grad(), \ | |
# torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
# # Fixes a bug where the first op in run_function modifies the | |
# # Tensor storage in place, which is not allowed for detach()'d | |
# # Tensors. | |
# shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
# output_tensors = ctx.run_function(*shallow_copies) | |
# input_grads = torch.autograd.grad( | |
# output_tensors, | |
# ctx.input_tensors + ctx.input_params, | |
# output_grads, | |
# allow_unused=True, | |
# ) | |
# del ctx.input_tensors | |
# del ctx.input_params | |
# del output_tensors | |
# return (None, None) + input_grads | |
# Fixes: When we set unet parameters with requires_grad=False, the original CheckpointFunction | |
# still tries to compute gradient for unet parameters. | |
# https://discuss.pytorch.org/t/get-runtimeerror-one-of-the-differentiated-tensors-does-not-require-grad-in-pytorch-lightning/179738/6 | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), | |
"dtype": torch.get_autocast_gpu_dtype(), | |
"cache_enabled": torch.is_autocast_cache_enabled()} | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(), \ | |
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + [x for x in ctx.input_params if x.requires_grad], | |
output_grads, | |
allow_unused=True, | |
) | |
grads = list(grads) | |
# Assign gradients to the correct positions, matching None for those that do not require gradients | |
input_grads = [] | |
for tensor in ctx.input_tensors + ctx.input_params: | |
if tensor.requires_grad: | |
input_grads.append(grads.pop(0)) # Get the next computed gradient | |
else: | |
input_grads.append(None) # No gradient required for this tensor | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + tuple(input_grads) | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
else: | |
embedding = repeat(timesteps, 'b -> b d', d=dim) | |
return embedding | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. | |
class SiLU(nn.Module): | |
def forward(self, x): | |
return x * torch.sigmoid(x) | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |