DiffIR2VR / controller /controller.py
jimmycv07's picture
first commit
1de8821
raw
history blame
19.4 kB
import gc
import torch
import torch.nn.functional as F
from einops import repeat, rearrange
from vidtome import merge
from utils.flow_utils import flow_warp, coords_grid
# AdaIn
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
class AttentionControl():
def __init__(self,
warp_period=(0.0, 0.0),
merge_period=(0.0, 0.0),
merge_ratio=(0.3, 0.3),
ToMe_period=(0.0, 1.0),
mask_period=(0.0, 0.0),
cross_period=(0.0, 0.0),
ada_period=(0.0, 0.0),
inner_strength=1.0,
loose_cfatnn=False,
flow_merge=True,
):
self.cur_frame_idx = 0
self.step_store = self.get_empty_store()
self.cur_step = 0
self.total_step = 0
self.cur_index = 0
self.init_store = False
self.restore = False
self.update = False
self.flow = None
self.mask = None
self.cldm = None
self.decoded_imgs = []
self.restorex0 = True
self.updatex0 = False
self.inner_strength = inner_strength
self.cross_period = cross_period
self.mask_period = mask_period
self.ada_period = ada_period
self.warp_period = warp_period
self.ToMe_period = ToMe_period
self.merge_period = merge_period
self.merge_ratio = merge_ratio
self.keyframe_idx = 0
self.flow_merge = flow_merge
self.distances = {}
self.flow_correspondence = {}
self.non_pad_ratio = (1.0, 1.0)
self.up_resolution = 1280 if loose_cfatnn else 1281
@staticmethod
def get_empty_store():
return {
'first': [],
'previous': [],
'x0_previous': [],
'first_ada': [],
'pre_x0': [],
"pre_keyframe_lq": None,
"flows": None,
"occ_masks": None,
"flow_confids": None,
"merge": None,
"unmerge": None,
"corres_scores": None,
"flows2": None,
"flow_confids2": None,
}
def forward(self, context, is_cross: bool, place_in_unet: str):
cross_period = (self.total_step * self.cross_period[0],
self.total_step * self.cross_period[1])
if not is_cross and place_in_unet == 'up' and context.shape[
2] < self.up_resolution:
if self.init_store:
self.step_store['first'].append(context.detach())
self.step_store['previous'].append(context.detach())
if self.update:
tmp = context.clone().detach()
if self.restore and self.cur_step >= cross_period[0] and \
self.cur_step <= cross_period[1]:
# context = torch.cat(
# (self.step_store['first'][self.cur_index],
# self.step_store['previous'][self.cur_index]),
# dim=1).clone()
context = self.step_store['previous'][self.cur_index].clone()
if self.update:
self.step_store['previous'][self.cur_index] = tmp
self.cur_index += 1
# print(is_cross, place_in_unet, context.shape[2])
# import ipdb; ipdb.set_trace()
return context
def update_x0(self, x0, cur_frame=0):
# if self.init_store:
# self.step_store['x0_previous'].append(x0.detach())
# style_mean, style_std = calc_mean_std(x0.detach())
# self.step_store['first_ada'].append(style_mean.detach())
# self.step_store['first_ada'].append(style_std.detach())
# if self.updatex0:
# tmp = x0.clone().detach()
if self.restorex0:
# if self.cur_step >= self.total_step * self.ada_period[
# 0] and self.cur_step <= self.total_step * self.ada_period[
# 1]:
# x0 = F.instance_norm(x0) * self.step_store['first_ada'][
# 2 * self.cur_step +
# 1] + self.step_store['first_ada'][2 * self.cur_step]
if self.cur_step >= self.total_step * self.warp_period[
0] and self.cur_step < int(self.total_step * self.warp_period[1]):
# mid_x = repeat(x[mid][None], 'b c h w -> (repeat b) c h w', repeat=x.shape[0])
mid = x0.shape[0] // 2
if len(self.step_store["pre_x0"]) == int(self.total_step * self.warp_period[1]):
print(f"[INFO] keyframe latent warping @ step {self.cur_step}...")
x0[mid] = (1 - self.step_store["occ_masks"][mid]) * x0[mid] + \
flow_warp(self.step_store["pre_x0"][self.cur_step][None], self.step_store["flows"][mid], mode='nearest')[0] * self.step_store["occ_masks"][mid]
print(f"[INFO] local latent warping @ step {self.cur_step}...")
for i in range(x0.shape[0]):
if i == mid:
continue
x0[i] = (1 - self.step_store["occ_masks"][i]) * x0[i] + \
flow_warp(x0[mid][None], self.step_store["flows"][i], mode='nearest')[0] * self.step_store["occ_masks"][i]
# x = rearrange(x, 'b c h w -> b (h w) c', h=64)
# self.step_store['x0_previous'][self.cur_step] = tmp
# print(f"[INFO] storeing {self.cur_frame_idx} th frame x0 for step {self.cur_step}...")
if len(self.step_store["pre_x0"]) < int(self.total_step * self.warp_period[1]):
self.step_store['pre_x0'].append(x0[mid])
else:
self.step_store['pre_x0'][self.cur_step] = x0[mid]
return x0
def merge_x0(self, x0, merge_ratio):
# print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
if self.cur_step >= self.total_step * self.merge_period[0] and \
self.cur_step < int(self.total_step * self.merge_period[1]):
print(f"[INFO] latent merging @ step {self.cur_step}...")
B, C, H, W = x0.shape
non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
padding_size_w = W - int(W * non_pad_ratio_w)
padding_size_h = H - int(H * non_pad_ratio_h)
non_pad_w = W - padding_size_w
non_pad_h = H - padding_size_h
padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
if padding_size_w:
padding_mask[:, -padding_size_w:] = 1
if padding_size_h:
padding_mask[-padding_size_h:, :] = 1
padding_mask = rearrange(padding_mask, 'h w -> (h w)')
idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
non_pad_idx = idx_buffer[None, ~padding_mask, None]
del idx_buffer, padding_mask
x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
# import ipdb; ipdb.set_trace()
# merge.visualize_correspondence(x_non_pad[0][None], x_non_pad[B//2][None], ratio=0.3, H=H, out="latent_correspondence.png")
# m, u, ret_dict = merge.bipartite_soft_matching_randframe(
# x_non_pad, B, merge_ratio, 0, target_stride=B)
import copy
flows = copy.deepcopy(self.step_store["flows"])
for i in range(B):
if flows[i] is not None:
flows[i] = flows[i][:, :, :non_pad_h, :non_pad_w]
# merge.visualize_flow_correspondence(x_non_pad[1][None], x_non_pad[B // 2][None], flow=flows[1], flow_confid=self.step_store["flow_confids"][1], \
# ratio=0.8, H=H, out=f"flow_correspondence_08.png")
# import ipdb; ipdb.set_trace()
x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
m, u, ret_dict = merge.bipartite_soft_matching_randframe(
x_non_pad, B, merge_ratio, 0, target_stride=B,
H=H,
flow=flows,
flow_confid=self.step_store["flow_confids"],
)
x_non_pad = u(m(x_non_pad))
# x_non_pad = self.step_store["unmerge"](self.step_store["merge"](x_non_pad))
x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', b=B)
# print(torch.mean(x0[0]).item(), torch.mean(x0[1]).item(), torch.mean(x0[2]).item(), torch.mean(x0[3]).item(), torch.mean(x0[4]).item())
# print(torch.std(x0[0]).item(), torch.std(x0[1]).item(), torch.std(x0[2]).item(), torch.std(x0[3]).item(), torch.std(x0[4]).item())
# import ipdb; ipdb.set_trace()
x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
# import ipdb; ipdb.set_trace()
return x0
def merge_x0_scores(self, x0, merge_ratio, merge_mode="replace"):
# print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
# import ipdb; ipdb.set_trace()
if self.cur_step >= self.total_step * self.merge_period[0] and \
self.cur_step < int(self.total_step * self.merge_period[1]):
print(f"[INFO] latent merging @ step {self.cur_step}...")
B, C, H, W = x0.shape
non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
padding_size_w = W - int(W * non_pad_ratio_w)
padding_size_h = H - int(H * non_pad_ratio_h)
padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
if padding_size_w:
padding_mask[:, -padding_size_w:] = 1
if padding_size_h:
padding_mask[-padding_size_h:, :] = 1
padding_mask = rearrange(padding_mask, 'h w -> (h w)')
idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
non_pad_idx = idx_buffer[None, ~padding_mask, None]
x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
x_non_pad_A, x_non_pad_N = x_non_pad.shape[1], x_non_pad.shape[1] * B
mid = B // 2
x_non_pad_ = x_non_pad.clone()
x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
# import ipdb; ipdb.set_trace()
idx_buffer = torch.arange(x_non_pad_N, device=x0.device, dtype=torch.int64)
randf = torch.tensor(B // 2, dtype=torch.int).to(x0.device)
# print(f"[INFO] {randf.item()} th frame as target")
dst_select = ((torch.div(idx_buffer, x_non_pad_A, rounding_mode='floor')) % B == randf).to(torch.bool)
# a_idx: src index. b_idx: dst index
a_idx = idx_buffer[None, ~dst_select, None]
b_idx = idx_buffer[None, dst_select, None]
del idx_buffer, padding_mask
num_dst = b_idx.shape[1]
# b, _, _ = x_non_pad.shape
b = 1
src = torch.gather(x_non_pad, dim=1, index=a_idx.expand(b, x_non_pad_N - num_dst, C))
tar = torch.gather(x_non_pad, dim=1, index=b_idx.expand(b, num_dst, C))
# tar = x_non_pad[mid][None]
# src = torch.cat((x_non_pad[:mid], x_non_pad[mid+1:]), dim=0)
# src = rearrange(src, 'b n c -> 1 (b n) c')
# print(f"[INFO] {x_non_pad.shape} {src.shape} {tar.shape} ...")
# print(f"[INFO] maximum score {torch.max(self.step_store['corres_scores'])} ...")
flow_src_idx = self.flow_correspondence[H][0]
flow_tar_idx = self.flow_correspondence[H][1]
flow_confid = self.step_store["flow_confids"][:mid] + self.step_store["flow_confids"][mid+1:]
flow_confid = torch.cat(flow_confid, dim=0)
flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
scores = F.normalize(self.step_store["corres_scores"], p=2, dim=-1)
flow_confid -= (torch.max(flow_confid) - torch.max(scores))
# merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None],
# score=scores[:,:x_non_pad_A],
# ratio=0.2, H=H-padding_size_h, out="latent_correspondence.png")
# import ipdb; ipdb.set_trace()
scores[:, flow_src_idx[0, :, 0], flow_tar_idx[0, :, 0]] += (flow_confid[:, flow_src_idx[0, :, 0]] * 0.3)
# merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None],
# score=scores[:,:x_non_pad_A],
# ratio=0.2, H=H-padding_size_h, out="latent_correspondence_flow.png")
# import ipdb; ipdb.set_trace()
r = min(src.shape[1], int(src.shape[1] * merge_ratio))
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx)
unm = torch.gather(src, dim=-2, index=unm_idx.expand(-1, -1, C))
if merge_mode != "replace":
src = torch.gather(src, dim=-2, index=src_idx.expand(-1, -1, C))
# In other mode such as mean, combine matched src and dst tokens.
tar = tar.scatter_reduce(-2, tar_idx.expand(-1, -1, C),
src, reduce=merge_mode, include_self=True)
# In replace mode, just cat unmerged tokens and tar tokens. Ignore src tokens.
# token = torch.cat([unm, tar], dim=1)
# unm_len = unm_idx.shape[1]
# unm, tar = token[..., :unm_len, :], token[..., unm_len:, :]
src = torch.gather(tar, dim=-2, index=tar_idx.expand(-1, -1, C))
# Combine back to the original shape
# x_non_pad = torch.zeros(b, x_non_pad_N, C, device=x0.device, dtype=x0.dtype)
# Scatter dst tokens
x_non_pad.scatter_(dim=-2, index=b_idx.expand(b, -1, C), src=tar)
# Scatter unmerged tokens
x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
dim=1, index=unm_idx).expand(-1, -1, C), src=unm)
# Scatter src tokens
x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
dim=1, index=src_idx).expand(-1, -1, C), src=src)
x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', a=x_non_pad_A)
x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
return x0
def set_distance(self, B, H, W, radius, device):
y, x = torch.meshgrid(torch.arange(H), torch.arange(W))
coords = torch.stack((y, x), dim=-1).float().to(device)
coords = rearrange(coords, 'h w c -> (h w) c')
# Calculate the Euclidean distance between all pixels
distances = torch.cdist(coords, coords)
# radius = W // 30
radius = 1 if radius == 0 else radius
# print(f"[INFO] W: {W} Radius: {radius} ")
distances //= radius
distances = torch.exp(-distances)
# distances += torch.diag_embed(torch.ones(A)).to(metric.device)
distances = repeat(distances, 'h a -> 1 (b h) a', b=B)
self.distances[H] = distances
def set_flow_correspondence(self, B, H, W, key_idx, flow_confid, flow):
if len(flow) != B - 1:
flow_confid = flow_confid[:key_idx] + flow_confid[key_idx+1:]
flow = flow[:key_idx] + flow[key_idx+1:]
flow_confid = torch.cat(flow_confid, dim=0)
flow = torch.cat(flow, dim=0)
flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
src_idx = edge_idx[..., :, :] # Merged Tokens
A = H * W
src_idx_tensor = src_idx[0, : ,0]
f = src_idx_tensor // A
id = src_idx_tensor % A
x = id % W
y = id // W
# Stack the results into a 2D tensor
src_fxy = torch.stack((f, x, y), dim=1)
# import ipdb; ipdb.set_trace()
grid = coords_grid(B-1, H, W).to(flow.device) + flow # [F-1, 2, H, W]
x = grid[src_fxy[:, 0], 0, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, W-1).long()
y = grid[src_fxy[:, 0], 1, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, H-1).long()
tar_xy = torch.stack((x, y), dim=1)
tar_idx = y * W + x
tar_idx = rearrange(tar_idx, ' d -> 1 d 1')
self.flow_correspondence[H] = (src_idx, tar_idx)
def set_merge(self, merge, unmerge):
self.step_store["merge"] = merge
self.step_store["unmerge"] = unmerge
def set_warp(self, flows, masks, flow_confids=None):
self.step_store["flows"] = flows
self.step_store["occ_masks"] = masks
if flow_confids is not None:
self.step_store["flow_confids"] = flow_confids
def set_warp2(self, flows, flow_confids):
self.step_store["flows2"] = flows
self.step_store["flow_confids2"] = flow_confids
def set_pre_keyframe_lq(self, pre_keyframe_lq):
self.step_store["pre_keyframe_lq"] = pre_keyframe_lq
def __call__(self, context, is_cross: bool, place_in_unet: str):
context = self.forward(context, is_cross, place_in_unet)
return context
def set_cur_frame_idx(self, frame_idx):
self.cur_frame_idx = frame_idx
def set_step(self, step):
self.cur_step = step
def set_total_step(self, total_step):
self.total_step = total_step
self.cur_index = 0
def clear_store(self):
del self.step_store
torch.cuda.empty_cache()
gc.collect()
self.step_store = self.get_empty_store()
def set_task(self, task, restore_step=1.0):
self.init_store = False
self.restore = False
self.update = False
self.cur_index = 0
self.restore_step = restore_step
self.updatex0 = False
self.restorex0 = False
if 'initfirst' in task:
self.init_store = True
self.clear_store()
if 'updatestyle' in task:
self.update = True
if 'keepstyle' in task:
self.restore = True
if 'updatex0' in task:
self.updatex0 = True
if 'keepx0' in task:
self.restorex0 = True