Update app.py
Browse files
app.py
CHANGED
|
@@ -10,14 +10,10 @@ from scipy.spatial import distance as dist
|
|
| 10 |
# ==============================================================================
|
| 11 |
# App Configuration & Styling
|
| 12 |
# ==============================================================================
|
| 13 |
-
st.set_page_config(
|
| 14 |
-
page_title="Document AI Toolkit",
|
| 15 |
-
page_icon="π€",
|
| 16 |
-
layout="wide"
|
| 17 |
-
)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
<style>
|
| 22 |
.main .block-container {
|
| 23 |
max-width: 900px;
|
|
@@ -27,20 +23,29 @@ st.markdown("""
|
|
| 27 |
padding-bottom: 2rem;
|
| 28 |
}
|
| 29 |
</style>
|
| 30 |
-
""",
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
# Model Loading (Cached)
|
| 34 |
# ==============================================================================
|
| 35 |
@st.cache_resource
|
| 36 |
def load_model():
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
model, processor = load_model()
|
| 41 |
|
| 42 |
# ==============================================================================
|
| 43 |
-
# Core Image Processing Functions
|
| 44 |
# ==============================================================================
|
| 45 |
def order_points(pts):
|
| 46 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
@@ -51,87 +56,151 @@ def order_points(pts):
|
|
| 51 |
(br, tr) = rightMost[np.argsort(D)[::-1], :]
|
| 52 |
return np.array([tl, tr, br, bl], dtype="float32")
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
heightA = np.
|
| 61 |
-
heightB = np.
|
| 62 |
-
|
| 63 |
-
dst = np.array([[0, 0], [
|
| 64 |
-
M = cv2.getPerspectiveTransform(
|
| 65 |
-
return cv2.warpPerspective(image, M, (
|
|
|
|
| 66 |
|
| 67 |
def find_and_straighten_document(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
if
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
def correct_orientation(image):
|
| 78 |
-
"""Robust orientation correction using
|
| 79 |
try:
|
| 80 |
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT, timeout=5)
|
| 81 |
-
rotation = osd
|
| 82 |
-
if rotation
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return cv2.rotate(image, angle_map[rotation])
|
| 85 |
return image
|
| 86 |
except Exception:
|
|
|
|
| 87 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
try:
|
| 93 |
-
data = pytesseract.image_to_data(
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
except Exception:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def extract_and_draw_table_structure(image_bgr):
|
| 103 |
-
"""
|
| 104 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 105 |
inputs = processor(images=image_pil, return_tensors="pt")
|
| 106 |
-
|
|
|
|
| 107 |
outputs = model(**inputs)
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
results = processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
|
| 110 |
-
|
|
|
|
| 111 |
colors = {"table row": (0, 255, 0), "table column": (255, 0, 0), "table": (255, 0, 255)}
|
| 112 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 113 |
-
|
| 114 |
-
if
|
| 115 |
-
xmin, ymin, xmax, ymax = [int(
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# ==============================================================================
|
| 120 |
# Streamlit UI
|
| 121 |
# ==============================================================================
|
| 122 |
|
| 123 |
-
#
|
| 124 |
if "stage" not in st.session_state:
|
| 125 |
st.session_state.stage = "upload"
|
| 126 |
st.session_state.original_image = None
|
| 127 |
st.session_state.processed_image = None
|
| 128 |
st.session_state.annotated_image = None
|
| 129 |
|
| 130 |
-
#
|
| 131 |
with st.sidebar:
|
| 132 |
st.title("π€ Document AI Toolkit")
|
| 133 |
st.markdown("---")
|
| 134 |
-
|
| 135 |
if st.button("π Start Over", use_container_width=True):
|
| 136 |
for key in list(st.session_state.keys()):
|
| 137 |
del st.session_state[key]
|
|
@@ -139,31 +208,37 @@ with st.sidebar:
|
|
| 139 |
|
| 140 |
if st.session_state.stage == "upload":
|
| 141 |
st.header("Step 1: Upload Image")
|
| 142 |
-
uploaded_file = st.file_uploader(
|
|
|
|
|
|
|
| 143 |
if uploaded_file:
|
| 144 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 145 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 146 |
st.session_state.stage = "processing"
|
| 147 |
st.rerun()
|
|
|
|
| 148 |
elif st.session_state.stage == "processing":
|
| 149 |
st.header("Step 2: Pre-process")
|
| 150 |
if st.button("βΆοΈ Start Pre-processing", use_container_width=True, type="primary"):
|
| 151 |
-
with st.spinner("
|
| 152 |
original_image = st.session_state.original_image
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
st.session_state.processed_image =
|
| 156 |
st.session_state.stage = "analysis"
|
| 157 |
st.rerun()
|
|
|
|
| 158 |
elif st.session_state.stage == "analysis":
|
| 159 |
st.header("Step 3: Analyze Table")
|
| 160 |
if st.button("π Find Table Structure", use_container_width=True, type="primary"):
|
| 161 |
with st.spinner("Running Table Transformer model..."):
|
| 162 |
-
st.session_state.annotated_image = extract_and_draw_table_structure(
|
|
|
|
|
|
|
| 163 |
st.session_state.stage = "done"
|
| 164 |
st.rerun()
|
| 165 |
|
| 166 |
-
#
|
| 167 |
st.title("Document Processing Workflow")
|
| 168 |
|
| 169 |
# Step 1: Upload
|
|
@@ -172,17 +247,27 @@ with expander1:
|
|
| 172 |
if st.session_state.original_image is None:
|
| 173 |
st.info("Please upload a document image using the sidebar to begin.")
|
| 174 |
else:
|
| 175 |
-
st.image(
|
|
|
|
|
|
|
|
|
|
| 176 |
st.success("Image uploaded successfully.")
|
| 177 |
|
| 178 |
# Step 2: Pre-process
|
| 179 |
if st.session_state.original_image is not None:
|
| 180 |
-
expander2 = st.expander(
|
|
|
|
|
|
|
|
|
|
| 181 |
with expander2:
|
| 182 |
if st.session_state.processed_image is None:
|
| 183 |
st.info("Click 'Start Pre-processing' in the sidebar.")
|
| 184 |
else:
|
| 185 |
-
st.image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
st.success("Pre-processing complete.")
|
| 187 |
|
| 188 |
# Step 3: Analysis
|
|
@@ -194,9 +279,21 @@ if st.session_state.processed_image is not None:
|
|
| 194 |
else:
|
| 195 |
tab1, tab2 = st.tabs(["β
Corrected Document", "π Table Structure"])
|
| 196 |
with tab1:
|
| 197 |
-
st.image(
|
|
|
|
|
|
|
|
|
|
| 198 |
_, buf = cv2.imencode(".jpg", st.session_state.processed_image)
|
| 199 |
-
st.download_button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
with tab2:
|
| 201 |
-
st.image(
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# ==============================================================================
|
| 11 |
# App Configuration & Styling
|
| 12 |
# ==============================================================================
|
| 13 |
+
st.set_page_config(page_title="Document AI Toolkit", page_icon="π€", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
st.markdown(
|
| 16 |
+
"""
|
| 17 |
<style>
|
| 18 |
.main .block-container {
|
| 19 |
max-width: 900px;
|
|
|
|
| 23 |
padding-bottom: 2rem;
|
| 24 |
}
|
| 25 |
</style>
|
| 26 |
+
""",
|
| 27 |
+
unsafe_allow_html=True,
|
| 28 |
+
)
|
| 29 |
|
| 30 |
# ==============================================================================
|
| 31 |
# Model Loading (Cached)
|
| 32 |
# ==============================================================================
|
| 33 |
@st.cache_resource
|
| 34 |
def load_model():
|
| 35 |
+
model = TableTransformerForObjectDetection.from_pretrained(
|
| 36 |
+
"microsoft/table-transformer-structure-recognition"
|
| 37 |
+
)
|
| 38 |
+
processor = DetrImageProcessor.from_pretrained(
|
| 39 |
+
"microsoft/table-transformer-structure-recognition"
|
| 40 |
+
)
|
| 41 |
+
model.eval()
|
| 42 |
+
return model, processor
|
| 43 |
+
|
| 44 |
|
| 45 |
model, processor = load_model()
|
| 46 |
|
| 47 |
# ==============================================================================
|
| 48 |
+
# Core Image Processing Functions
|
| 49 |
# ==============================================================================
|
| 50 |
def order_points(pts):
|
| 51 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
|
|
| 56 |
(br, tr) = rightMost[np.argsort(D)[::-1], :]
|
| 57 |
return np.array([tl, tr, br, bl], dtype="float32")
|
| 58 |
|
| 59 |
+
|
| 60 |
+
def _four_point_warp(image, pts):
|
| 61 |
+
pts = order_points(pts.astype("float32"))
|
| 62 |
+
(tl, tr, br, bl) = pts
|
| 63 |
+
widthA = np.linalg.norm(br - bl)
|
| 64 |
+
widthB = np.linalg.norm(tr - tl)
|
| 65 |
+
heightA = np.linalg.norm(tr - br)
|
| 66 |
+
heightB = np.linalg.norm(tl - bl)
|
| 67 |
+
maxW, maxH = int(max(widthA, widthB)), int(max(heightA, heightB))
|
| 68 |
+
dst = np.array([[0, 0], [maxW - 1, 0], [maxW - 1, maxH - 1], [0, maxH - 1]], dtype="float32")
|
| 69 |
+
M = cv2.getPerspectiveTransform(pts, dst)
|
| 70 |
+
return cv2.warpPerspective(image, M, (maxW, maxH))
|
| 71 |
+
|
| 72 |
|
| 73 |
def find_and_straighten_document(image):
|
| 74 |
+
"""Find 4 page corners; fall back to minAreaRect if needed."""
|
| 75 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 76 |
+
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 77 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 78 |
+
edges = cv2.dilate(edges, np.ones((3, 3), np.uint8), 1)
|
| 79 |
+
|
| 80 |
+
cnts, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
| 81 |
+
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]
|
| 82 |
+
|
| 83 |
+
for c in cnts:
|
| 84 |
+
peri = cv2.arcLength(c, True)
|
| 85 |
+
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
|
| 86 |
+
if len(approx) == 4:
|
| 87 |
+
return _four_point_warp(image, approx.reshape(4, 2))
|
| 88 |
+
|
| 89 |
+
if cnts:
|
| 90 |
+
box = cv2.boxPoints(cv2.minAreaRect(max(cnts, key=cv2.contourArea)))
|
| 91 |
+
return _four_point_warp(image, box)
|
| 92 |
+
|
| 93 |
+
return image
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def deskew_slight(image):
|
| 97 |
+
"""Remove small residual tilt so rows/cols are parallel to axes."""
|
| 98 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 99 |
+
thr = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
| 100 |
+
coords = np.column_stack(np.where(thr == 0)) # use ink pixels
|
| 101 |
+
if len(coords) < 100:
|
| 102 |
+
return image
|
| 103 |
+
angle = cv2.minAreaRect(coords)[-1]
|
| 104 |
+
angle = -(90 + angle) if angle < -45 else -angle
|
| 105 |
+
if abs(angle) < 0.3:
|
| 106 |
+
return image
|
| 107 |
+
(h, w) = image.shape[:2]
|
| 108 |
+
M = cv2.getRotationMatrix2D((w // 2, h // 2), angle, 1.0)
|
| 109 |
+
return cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
|
| 110 |
+
|
| 111 |
|
| 112 |
def correct_orientation(image):
|
| 113 |
+
"""Robust orientation correction using pytesseract + fallback."""
|
| 114 |
try:
|
| 115 |
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT, timeout=5)
|
| 116 |
+
rotation = int(osd.get("rotate", 0))
|
| 117 |
+
if rotation:
|
| 118 |
+
# pytesseract's 'rotate' is the CLOCKWISE angle to correct the image.
|
| 119 |
+
angle_map = {
|
| 120 |
+
90: cv2.ROTATE_90_CLOCKWISE,
|
| 121 |
+
180: cv2.ROTATE_180,
|
| 122 |
+
270: cv2.ROTATE_90_COUNTERCLOCKWISE,
|
| 123 |
+
}
|
| 124 |
return cv2.rotate(image, angle_map[rotation])
|
| 125 |
return image
|
| 126 |
except Exception:
|
| 127 |
+
# Fallback: choose the rotation with the most horizontal text boxes
|
| 128 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 129 |
+
thr = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
| 130 |
+
rots = {
|
| 131 |
+
0: thr,
|
| 132 |
+
90: cv2.rotate(thr, cv2.ROTATE_90_CLOCKWISE),
|
| 133 |
+
180: cv2.rotate(thr, cv2.ROTATE_180),
|
| 134 |
+
270: cv2.rotate(thr, cv2.ROTATE_90_COUNTERCLOCKWISE),
|
| 135 |
+
}
|
| 136 |
+
best = 0
|
| 137 |
+
best_count = -1
|
| 138 |
+
for ang, img in rots.items():
|
| 139 |
try:
|
| 140 |
+
data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, timeout=5)
|
| 141 |
+
cnt = sum(
|
| 142 |
+
1
|
| 143 |
+
for i, c in enumerate(data["conf"])
|
| 144 |
+
if str(c).isdigit()
|
| 145 |
+
and int(c) > 10
|
| 146 |
+
and data["width"][i] > data["height"][i]
|
| 147 |
+
)
|
| 148 |
+
if cnt > best_count:
|
| 149 |
+
best, best_count = ang, cnt
|
| 150 |
except Exception:
|
| 151 |
+
pass
|
| 152 |
+
if best:
|
| 153 |
+
angle_map = {
|
| 154 |
+
90: cv2.ROTATE_90_CLOCKWISE,
|
| 155 |
+
180: cv2.ROTATE_180,
|
| 156 |
+
270: cv2.ROTATE_90_COUNTERCLOCKWISE,
|
| 157 |
+
}
|
| 158 |
+
return cv2.rotate(image, angle_map[best])
|
| 159 |
+
return image
|
| 160 |
+
|
| 161 |
|
| 162 |
def extract_and_draw_table_structure(image_bgr):
|
| 163 |
+
"""Run TableTransformer and draw table/table row/table column boxes."""
|
| 164 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 165 |
inputs = processor(images=image_pil, return_tensors="pt")
|
| 166 |
+
|
| 167 |
+
with torch.inference_mode():
|
| 168 |
outputs = model(**inputs)
|
| 169 |
+
|
| 170 |
+
h, w = image_bgr.shape[:2]
|
| 171 |
+
target_sizes = torch.tensor([[h, w]], dtype=torch.float32)
|
| 172 |
results = processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
|
| 173 |
+
|
| 174 |
+
img = image_bgr.copy()
|
| 175 |
colors = {"table row": (0, 255, 0), "table column": (255, 0, 0), "table": (255, 0, 255)}
|
| 176 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 177 |
+
cls = model.config.id2label[label.item()]
|
| 178 |
+
if cls in colors:
|
| 179 |
+
xmin, ymin, xmax, ymax = [int(round(v)) for v in box.tolist()]
|
| 180 |
+
xmin = max(0, min(xmin, w - 1))
|
| 181 |
+
xmax = max(0, min(xmax, w - 1))
|
| 182 |
+
ymin = max(0, min(ymin, h - 1))
|
| 183 |
+
ymax = max(0, min(ymax, h - 1))
|
| 184 |
+
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), colors[cls], 2)
|
| 185 |
+
return img
|
| 186 |
+
|
| 187 |
|
| 188 |
# ==============================================================================
|
| 189 |
# Streamlit UI
|
| 190 |
# ==============================================================================
|
| 191 |
|
| 192 |
+
# Session state
|
| 193 |
if "stage" not in st.session_state:
|
| 194 |
st.session_state.stage = "upload"
|
| 195 |
st.session_state.original_image = None
|
| 196 |
st.session_state.processed_image = None
|
| 197 |
st.session_state.annotated_image = None
|
| 198 |
|
| 199 |
+
# Sidebar
|
| 200 |
with st.sidebar:
|
| 201 |
st.title("π€ Document AI Toolkit")
|
| 202 |
st.markdown("---")
|
| 203 |
+
|
| 204 |
if st.button("π Start Over", use_container_width=True):
|
| 205 |
for key in list(st.session_state.keys()):
|
| 206 |
del st.session_state[key]
|
|
|
|
| 208 |
|
| 209 |
if st.session_state.stage == "upload":
|
| 210 |
st.header("Step 1: Upload Image")
|
| 211 |
+
uploaded_file = st.file_uploader(
|
| 212 |
+
"Upload your document", type=["jpg", "jpeg", "png"], label_visibility="collapsed"
|
| 213 |
+
)
|
| 214 |
if uploaded_file:
|
| 215 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 216 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 217 |
st.session_state.stage = "processing"
|
| 218 |
st.rerun()
|
| 219 |
+
|
| 220 |
elif st.session_state.stage == "processing":
|
| 221 |
st.header("Step 2: Pre-process")
|
| 222 |
if st.button("βΆοΈ Start Pre-processing", use_container_width=True, type="primary"):
|
| 223 |
+
with st.spinner("Correcting orientation, straightening & deskewing..."):
|
| 224 |
original_image = st.session_state.original_image
|
| 225 |
+
oriented = correct_orientation(original_image)
|
| 226 |
+
straightened = find_and_straighten_document(oriented)
|
| 227 |
+
st.session_state.processed_image = deskew_slight(straightened)
|
| 228 |
st.session_state.stage = "analysis"
|
| 229 |
st.rerun()
|
| 230 |
+
|
| 231 |
elif st.session_state.stage == "analysis":
|
| 232 |
st.header("Step 3: Analyze Table")
|
| 233 |
if st.button("π Find Table Structure", use_container_width=True, type="primary"):
|
| 234 |
with st.spinner("Running Table Transformer model..."):
|
| 235 |
+
st.session_state.annotated_image = extract_and_draw_table_structure(
|
| 236 |
+
st.session_state.processed_image
|
| 237 |
+
)
|
| 238 |
st.session_state.stage = "done"
|
| 239 |
st.rerun()
|
| 240 |
|
| 241 |
+
# Main panel
|
| 242 |
st.title("Document Processing Workflow")
|
| 243 |
|
| 244 |
# Step 1: Upload
|
|
|
|
| 247 |
if st.session_state.original_image is None:
|
| 248 |
st.info("Please upload a document image using the sidebar to begin.")
|
| 249 |
else:
|
| 250 |
+
st.image(
|
| 251 |
+
cv2.cvtColor(st.session_state.original_image, cv2.COLOR_BGR2RGB),
|
| 252 |
+
use_container_width=True,
|
| 253 |
+
)
|
| 254 |
st.success("Image uploaded successfully.")
|
| 255 |
|
| 256 |
# Step 2: Pre-process
|
| 257 |
if st.session_state.original_image is not None:
|
| 258 |
+
expander2 = st.expander(
|
| 259 |
+
"Step 2: Pre-process Document",
|
| 260 |
+
expanded=(st.session_state.stage == "processing" or st.session_state.stage == "analysis"),
|
| 261 |
+
)
|
| 262 |
with expander2:
|
| 263 |
if st.session_state.processed_image is None:
|
| 264 |
st.info("Click 'Start Pre-processing' in the sidebar.")
|
| 265 |
else:
|
| 266 |
+
st.image(
|
| 267 |
+
cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB),
|
| 268 |
+
caption="Oriented β’ Straightened β’ Deskewed",
|
| 269 |
+
use_container_width=True,
|
| 270 |
+
)
|
| 271 |
st.success("Pre-processing complete.")
|
| 272 |
|
| 273 |
# Step 3: Analysis
|
|
|
|
| 279 |
else:
|
| 280 |
tab1, tab2 = st.tabs(["β
Corrected Document", "π Table Structure"])
|
| 281 |
with tab1:
|
| 282 |
+
st.image(
|
| 283 |
+
cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB),
|
| 284 |
+
use_container_width=True,
|
| 285 |
+
)
|
| 286 |
_, buf = cv2.imencode(".jpg", st.session_state.processed_image)
|
| 287 |
+
st.download_button(
|
| 288 |
+
"π₯ Download Clean Image",
|
| 289 |
+
data=buf.tobytes(),
|
| 290 |
+
file_name="corrected.jpg",
|
| 291 |
+
mime="image/jpeg",
|
| 292 |
+
use_container_width=True,
|
| 293 |
+
)
|
| 294 |
with tab2:
|
| 295 |
+
st.image(
|
| 296 |
+
cv2.cvtColor(st.session_state.annotated_image, cv2.COLOR_BGR2RGB),
|
| 297 |
+
use_container_width=True,
|
| 298 |
+
)
|
| 299 |
+
st.success("Analysis complete.")
|