Spaces:
Runtime error
Runtime error
kmckee95
commited on
Commit
•
9f04aa3
1
Parent(s):
902c094
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
print('Loading......')
|
8 |
+
|
9 |
+
# load the saved model
|
10 |
+
rfc_saved = pickle.load(open('rfc.pickle','rb'))
|
11 |
+
|
12 |
+
full_pipeline_saved = pickle.load(open('full_pipeline.pickle','rb'))
|
13 |
+
|
14 |
+
|
15 |
+
# function to check the heart disease risk
|
16 |
+
def CheckHeartDisease(age,sex,ChestPainType,RestingBP,Cholesterol,
|
17 |
+
FastingBS,RestingECG,MaxHR,ExerciseAngina,Oldpeak,ST_Slope):
|
18 |
+
try:
|
19 |
+
df_model = pd.DataFrame([],columns=['Age','Sex','ChestPainType','RestingBP','Cholesterol','FastingBS','RestingECG','MaxHR','ExerciseAngina', 'Oldpeak','ST_Slope'])
|
20 |
+
|
21 |
+
df_model.loc[0] = [age,sex,ChestPainType,RestingBP,Cholesterol,FastingBS,RestingECG,MaxHR,ExerciseAngina,Oldpeak,ST_Slope]
|
22 |
+
|
23 |
+
# preprocess the person details
|
24 |
+
X_processed = full_pipeline_saved.transform(df_model)
|
25 |
+
|
26 |
+
# do the prediction
|
27 |
+
y_pred = rfc_saved.predict(X_processed)
|
28 |
+
|
29 |
+
# plot risk of heart disease based on sex
|
30 |
+
df = pd.read_csv('heart.csv')
|
31 |
+
target = df['HeartDisease'].replace([0,1],['Low','High'])
|
32 |
+
data = pd.crosstab(index=df['Sex'],
|
33 |
+
columns=target)
|
34 |
+
|
35 |
+
data.plot(kind='bar',stacked=True)
|
36 |
+
fig1 = plt.gcf()
|
37 |
+
plt.close()
|
38 |
+
|
39 |
+
# plot count of person within given age range, with heart disease risk
|
40 |
+
bins=[0,30,50,80]
|
41 |
+
sns.countplot(x=pd.cut(df.Age,bins=bins),hue=target,color='r')
|
42 |
+
fig2 = plt.gcf()
|
43 |
+
plt.close()
|
44 |
+
|
45 |
+
# plot graph based on ChestPainType
|
46 |
+
sns.countplot(x=target,hue=df.ChestPainType)
|
47 |
+
plt.xticks(np.arange(2), ['No', 'Yes'])
|
48 |
+
fig3 = plt.gcf()
|
49 |
+
|
50 |
+
if y_pred[0]==0:
|
51 |
+
return 'Low Risk of Heart Disease',fig1,fig2,fig3
|
52 |
+
else:
|
53 |
+
return 'High Risk of Heart Disease',fig1,fig2,fig3
|
54 |
+
|
55 |
+
except:
|
56 |
+
return 'Wrong inputs',fig1,fig2,fig3
|
57 |
+
|
58 |
+
# create GUI
|
59 |
+
iface = gr.Interface(
|
60 |
+
CheckHeartDisease, # its the function to be called with below parameters
|
61 |
+
[
|
62 |
+
gr.inputs.Number(label='Age (0-115)'),
|
63 |
+
gr.inputs.Dropdown(['M','F'],default='M'),
|
64 |
+
gr.inputs.Dropdown(['ATA', 'NAP', 'ASY','TA'],default='TA'),
|
65 |
+
gr.inputs.Number(label='RESTINGBP (0-200)'),
|
66 |
+
gr.inputs.Number(label='CHOLESTEROL (0-603)'),
|
67 |
+
gr.inputs.Number(label='FASTINGBS (0-1)'),
|
68 |
+
gr.inputs.Dropdown(['Normal', 'ST' ,'LVH'],default='ST'),
|
69 |
+
gr.inputs.Number(label='MAXHR (60-202)'),
|
70 |
+
|
71 |
+
gr.inputs.Dropdown(['Y','N'],default='Y'),
|
72 |
+
gr.inputs.Number(label='OLDPEAK (-2.6 to 6.2)'),
|
73 |
+
gr.inputs.Dropdown(['Up', 'Flat', 'Down'],default='Up')
|
74 |
+
],
|
75 |
+
[gr.outputs.Textbox(),"plot","plot","plot"]
|
76 |
+
|
77 |
+
, live=False,layout='vertical',title='Get Your Heart Disease Status',
|
78 |
+
)
|
79 |
+
|
80 |
+
iface.launch() # launch the gui
|