Kleo commited on
Commit
1c6cffa
1 Parent(s): 9d48eb8

Upload application.py

Browse files
Files changed (1) hide show
  1. application.py +120 -0
application.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Application.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/148du8431_JkTaH-totdocC2aUXzOWimL
8
+ """
9
+
10
+ from google.colab import drive
11
+ drive.mount('/content/drive')
12
+
13
+ pip install transformers
14
+
15
+ pip install gradio
16
+
17
+ from transformers import BertTokenizer, TFBertForSequenceClassification
18
+ import tensorflow as tf
19
+
20
+ # Load tokenizer
21
+ tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
22
+
23
+ # Load model
24
+ model = TFBertForSequenceClassification.from_pretrained('/content/drive/MyDrive/Mini_Project/new_emdedding trial')
25
+
26
+ def check_sarcasm(sentence):
27
+ tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
28
+ tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
29
+ tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
30
+ pred_label = tf.argmax(tf_predictions, axis=1)
31
+
32
+ if pred_label == 1:
33
+ return "Sarcastic"
34
+ else:
35
+ return "Not sarcastic"
36
+
37
+ # Example usage
38
+ sentence = "Μεξικό: 25 νεκροί από την πτώση λεωφορείου στον γκρεμό"
39
+ result = check_sarcasm(sentence)
40
+ print(result)
41
+
42
+ import gradio as gr
43
+
44
+ def check_sarcasm(sentence):
45
+ tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
46
+ tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
47
+ tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
48
+ pred_label = tf.argmax(tf_predictions, axis=1)
49
+
50
+ if pred_label == 1:
51
+ return "Sarcastic"
52
+ else:
53
+ return "Not sarcastic"
54
+
55
+ # Create a Gradio interface
56
+ iface = gr.Interface(
57
+ fn=check_sarcasm,
58
+ inputs="text",
59
+ outputs="text",
60
+ title="Sarcasm Detection",
61
+ description="Enter a headline and check if it's sarcastic."
62
+ )
63
+
64
+ # Launch the interface
65
+ iface.launch(share=True)
66
+
67
+ from transformers import pipeline
68
+ import gradio as gr
69
+
70
+ model = pipeline("Sarcasm Detection" , model="/content/drive/MyDrive/Mini_Project/new_emdedding trial/tf_model.h5")
71
+ def check_sarcasm(sentence):
72
+ tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
73
+ tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
74
+ tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
75
+ pred_label = tf.argmax(tf_predictions, axis=1)
76
+
77
+ if pred_label == 1:
78
+ return "Sarcastic"
79
+ else:
80
+ return "Not sarcastic"
81
+ # Create a Gradio interface
82
+ iface = gr.Interface(
83
+ fn=check_sarcasm,
84
+ inputs="text",
85
+ outputs="text",
86
+ title="Sarcasm Detection",
87
+ description="Enter a headline and check if it's sarcastic."
88
+ )
89
+
90
+ # Launch the interface
91
+ iface.launch()
92
+
93
+ import gradio as gr
94
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
97
+ model = AutoModelForSequenceClassification.from_pretrained("/content/drive/MyDrive/Mini_Project/new_emdedding trial",from_tf=True)
98
+ def check_sarcasm(sentence):
99
+ tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
100
+ tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
101
+ tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
102
+ pred_label = tf.argmax(tf_predictions, axis=1)
103
+
104
+ if pred_label == 1:
105
+ return "Sarcastic"
106
+ else:
107
+ return "Not sarcastic"
108
+
109
+ # Create a Gradio interface
110
+ iface = gr.Interface(
111
+ fn=check_sarcasm,
112
+ inputs="text",
113
+ outputs="text",
114
+ title="Sarcasm Detection",
115
+ description="Enter a headline and check if it's sarcastic."
116
+ )
117
+
118
+ # Launch the interface
119
+ iface.launch(share=True)
120
+