Spaces:
Runtime error
Runtime error
from torch import nn | |
import torch | |
import torch.nn.functional as F | |
class LayerNorm(nn.Module): | |
def __init__(self, normalized_shape, eps = 1e-5, elementwise_affine = True, | |
device=None, dtype=None): | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__() | |
if isinstance(normalized_shape, int): | |
normalized_shape = [normalized_shape] | |
self.normalized_shape = normalized_shape # type: ignore[arg-type] | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
self.weight = nn.parameter.Parameter(torch.ones(self.normalized_shape, **factory_kwargs)) | |
self.bias = nn.parameter.Parameter(torch.zeros(self.normalized_shape, **factory_kwargs)) | |
else: | |
self.register_parameter('weight', None) | |
self.register_parameter('bias', None) | |
def forward(self, input): | |
orig_type = input.dtype | |
ret = F.layer_norm(input.type(torch.float32), self.normalized_shape, self.weight.type(torch.float32), self.bias.type(torch.float32), self.eps) | |
return ret.type(orig_type) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight |