Kit-Lemonfoot's picture
Upload app.py
b5bac24 verified
raw
history blame
17.4 kB
import argparse
import datetime
import os
import sys
import warnings
import gradio as gr
import numpy as np
import torch
from gradio.processing_utils import convert_to_16_bit_wav
import utils
from config import config
from infer import get_net_g, infer
from tools.log import logger
is_hf_spaces = os.getenv("SYSTEM") == "spaces"
limit = 150
class Model:
def __init__(self, model_path, config_path, style_vec_path, device):
self.model_path = model_path
self.config_path = config_path
self.device = device
self.style_vec_path = style_vec_path
self.load()
def load(self):
self.hps = utils.get_hparams_from_file(self.config_path)
self.spk2id = self.hps.data.spk2id
self.num_styles = self.hps.data.num_styles
if hasattr(self.hps.data, "style2id"):
self.style2id = self.hps.data.style2id
else:
self.style2id = {str(i): i for i in range(self.num_styles)}
self.style_vectors = np.load(self.style_vec_path)
self.net_g = None
def load_net_g(self):
self.net_g = get_net_g(
model_path=self.model_path,
version=self.hps.version,
device=self.device,
hps=self.hps,
)
def get_style_vector(self, style_id, weight=1.0):
mean = self.style_vectors[0]
style_vec = self.style_vectors[style_id]
style_vec = mean + (style_vec - mean) * weight
return style_vec
def get_style_vector_from_audio(self, audio_path, weight=1.0):
from style_gen import extract_style_vector
xvec = extract_style_vector(audio_path)
mean = self.style_vectors[0]
xvec = mean + (xvec - mean) * weight
return xvec
def infer(
self,
text,
language="JP",
sid=0,
reference_audio_path=None,
sdp_ratio=0.2,
noise=0.6,
noisew=0.8,
length=1.0,
line_split=True,
split_interval=0.2,
style_text="",
style_weight=0.7,
use_style_text=False,
style="0",
emotion_weight=1.0,
):
if reference_audio_path == "":
reference_audio_path = None
if style_text == "" or not use_style_text:
style_text = None
if self.net_g is None:
self.load_net_g()
if reference_audio_path is None:
style_id = self.style2id[style]
style_vector = self.get_style_vector(style_id, emotion_weight)
else:
style_vector = self.get_style_vector_from_audio(
reference_audio_path, emotion_weight
)
if not line_split:
with torch.no_grad():
audio = infer(
text=text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
style_text=style_text,
style_weight=style_weight,
style_vec=style_vector,
)
else:
texts = text.split("\n")
texts = [t for t in texts if t != ""]
audios = []
with torch.no_grad():
for i, t in enumerate(texts):
audios.append(
infer(
text=t,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
style_text=style_text,
style_weight=style_weight,
style_vec=style_vector,
)
)
if i != len(texts) - 1:
audios.append(np.zeros(int(44100 * split_interval)))
audio = np.concatenate(audios)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio = convert_to_16_bit_wav(audio)
return (self.hps.data.sampling_rate, audio)
class ModelHolder:
def __init__(self, root_dir, device):
self.root_dir = root_dir
self.device = device
self.model_files_dict = {}
self.current_model = None
self.model_names = []
self.models = []
self.refresh()
def refresh(self):
self.model_files_dict = {}
self.model_names = []
self.current_model = None
model_dirs = [
d
for d in os.listdir(self.root_dir)
if os.path.isdir(os.path.join(self.root_dir, d))
]
for model_name in model_dirs:
model_dir = os.path.join(self.root_dir, model_name)
model_files = [
os.path.join(model_dir, f)
for f in os.listdir(model_dir)
if f.endswith(".pth") or f.endswith(".pt") or f.endswith(".safetensors")
]
if len(model_files) == 0:
logger.info(
f"No model files found in {self.root_dir}/{model_name}, so skip it"
)
self.model_files_dict[model_name] = model_files
self.model_names.append(model_name)
def load_model(self, model_name, model_path):
if model_name not in self.model_files_dict:
raise Exception(f"モデル名{model_name}は存在しません")
if model_path not in self.model_files_dict[model_name]:
raise Exception(f"pthファイル{model_path}は存在しません")
self.current_model = Model(
model_path=model_path,
config_path=os.path.join(self.root_dir, model_name, "config.json"),
style_vec_path=os.path.join(self.root_dir, model_name, "style_vectors.npy"),
device=self.device,
)
styles = list(self.current_model.style2id.keys())
speakers = list(self.current_model.spk2id.keys())
return (
gr.Dropdown(choices=styles, value=styles[0]),
gr.update(interactive=True, value="Synthesize"),
gr.Dropdown(choices=speakers, value=speakers[0]),
)
def update_model_files_dropdown(self, model_name):
model_files = self.model_files_dict[model_name]
return gr.Dropdown(choices=model_files, value=model_files[0])
def update_model_names_dropdown(self):
self.refresh()
initial_model_name = self.model_names[0]
initial_model_files = self.model_files_dict[initial_model_name]
return (
gr.Dropdown(choices=self.model_names, value=initial_model_name),
gr.Dropdown(choices=initial_model_files, value=initial_model_files[0]),
gr.update(interactive=False), # For tts_button
)
def tts_fn(
model_name,
model_path,
text,
language,
reference_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
style_text,
style_weight,
use_style_text,
emotion,
emotion_weight,
speaker,
):
if not text:
return "Please enter some text.", (44100, None)
#logger.info(f"Start TTS with {language}:\n{text}")
#logger.info(f"Model: {model_holder.current_model.model_path}")
#logger.info(f"SDP: {sdp_ratio}, Noise: {noise_scale}, Noise_W: {noise_scale_w}, Length: {length_scale}")
#logger.info(f"Style text enabled: {use_style_text}, Style text: {style_text}, Style weight: {style_weight}")
#logger.info(f"Style: {emotion}, Style weight: {emotion_weight}")
if is_hf_spaces and len(text) > limit:
return f"Too long! There is a character limit of {limit} characters.", (44100, None)
assert model_holder.current_model is not None
if(model_holder.current_model.model_path != model_path):
model_holder.load_model(model_name, model_path)
speaker_id = model_holder.current_model.spk2id[speaker]
start_time = datetime.datetime.now()
sr, audio = model_holder.current_model.infer(
text=text,
language=language,
sid=speaker_id,
reference_audio_path=reference_audio_path,
sdp_ratio=sdp_ratio,
noise=noise_scale,
noisew=noise_scale_w,
length=length_scale,
line_split=line_split,
split_interval=split_interval,
style_text=style_text,
style_weight=style_weight,
use_style_text=use_style_text,
style=emotion,
emotion_weight=emotion_weight,
)
end_time = datetime.datetime.now()
duration = (end_time - start_time).total_seconds()
logger.info(f"Successful inference, took {duration}s | {speaker} | {sdp_ratio}/{noise_scale}/{noise_scale_w}/{length_scale} | {text}")
return f"Success, time: {duration} seconds.", (sr, audio)
initial_text = "Hi there! How are you doing?"
initial_md = """
# LemonfootSBV2 😊🍋
### Space by [Kit Lemonfoot](https://huggingface.co/Kit-Lemonfoot) / [Noel Shirogane's High Flying Birds](https://www.youtube.com/channel/UCG9A0OJsJTluLOXfMZjJ9xA)
### Based on code originally by [fishaudio](https://github.com/fishaudio) and [litagin02](https://github.com/litagin02)
This HuggingFace space is designed to demonstrate multiple experimental [Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2) models made by Kit Lemonfoot.
Do no evil.
"""
style_md = """
- You can control things like voice tone, emotion, and reading style through presets or through voice files.
- Neutral acts as an average across all speakers. Styling options act as an override to Neutral.
- Setting the intensity too high will likely break the output.
- The required intensity will depend based on the speaker and the desired style.
- If you're using preexisting audio data to style the output, try to use a voice that is similar to the desired speaker.
"""
def make_interactive():
return gr.update(interactive=True, value="Synthesize")
def make_non_interactive():
return gr.update(interactive=False, value="Synthesize (Please load a model!)")
def gr_util(item):
if item == "Select from presets":
return (gr.update(visible=True), gr.Audio(visible=False, value=None))
else:
return (gr.update(visible=False), gr.update(visible=True))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--dir", "-d", type=str, help="Model directory", default=config.out_dir
)
args = parser.parse_args()
model_dir = args.dir
if args.cpu:
device = "cpu"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model_holder = ModelHolder(model_dir, device)
languages = ["EN", "JP", "ZH"]
model_names = model_holder.model_names
if len(model_names) == 0:
logger.error(f"No models found. Please place the model in {model_dir}.")
sys.exit(1)
initial_id = 0
initial_pth_files = model_holder.model_files_dict[model_names[initial_id]]
with gr.Blocks(theme=gr.themes.Base(primary_hue="emerald", secondary_hue="green"), title="LemonfootSBV2") as app:
gr.Markdown(initial_md)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column(scale=3):
model_name = gr.Dropdown(
label="Available Models",
choices=model_names,
value=model_names[initial_id],
)
model_path = gr.Dropdown(
label="Model File",
choices=initial_pth_files,
value=initial_pth_files[0],
)
refresh_button = gr.Button("Refresh", scale=1, visible=not is_hf_spaces)
load_button = gr.Button("Load", scale=1, variant="primary")
text_input = gr.TextArea(label="Text", value=initial_text)
line_split = gr.Checkbox(label="Divide text seperately by line breaks", value=True)
split_interval = gr.Slider(
minimum=0.0,
maximum=2,
value=0.5,
step=0.1,
label="Length of division seperation time (in seconds)",
)
language = gr.Dropdown(choices=languages, value="EN", label="Language")
speaker = gr.Dropdown(label="Speaker")
with gr.Accordion(label="Advanced Settings", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise_W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1.0, step=0.1, label="Length"
)
use_style_text = gr.Checkbox(label="Use stylization text", value=False)
style_text = gr.Textbox(
label="Style text",
placeholder="Why are you ignoring me? You're unforgivable and disgusting! I hope you die.",
info="The voice will be similar in tone and emotion to the text, however inflection and tempo may be worse as a result.",
visible=False,
)
style_text_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Text stylization strength",
visible=False,
)
use_style_text.change(
lambda x: (gr.Textbox(visible=x), gr.Slider(visible=x)),
inputs=[use_style_text],
outputs=[style_text, style_text_weight],
)
with gr.Column():
with gr.Accordion("Styling Guide", open=False):
gr.Markdown(style_md)
style_mode = gr.Radio(
["Select from presets", "Use an audio file"],
label="Style Specification",
value="Select from presets",
)
style = gr.Dropdown(
label="Current style (Neutral is an average style)",
choices=["Please load a model first!"],
value="Please load a model first!",
)
style_weight = gr.Slider(
minimum=0,
maximum=50,
value=5,
step=0.1,
label="Style strength",
)
ref_audio_path = gr.Audio(label="Reference Audio", type="filepath", visible=False)
tts_button = gr.Button(
"Synthesize (Please load a model!)", variant="primary", interactive=False
)
text_output = gr.Textbox(label="Info")
audio_output = gr.Audio(label="Result")
tts_button.click(
tts_fn,
inputs=[
model_name,
model_path,
text_input,
language,
ref_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
style_text,
style_text_weight,
use_style_text,
style,
style_weight,
speaker,
],
outputs=[text_output, audio_output],
)
model_name.change(
model_holder.update_model_files_dropdown,
inputs=[model_name],
outputs=[model_path],
)
model_path.change(make_non_interactive, outputs=[tts_button])
refresh_button.click(
model_holder.update_model_names_dropdown,
outputs=[model_name, model_path, tts_button],
)
load_button.click(
model_holder.load_model,
inputs=[model_name, model_path],
outputs=[style, tts_button, speaker],
)
style_mode.change(
gr_util,
inputs=[style_mode],
outputs=[style, ref_audio_path],
)
app.launch(inbrowser=True)