Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from util_funcs import get_length_param | |
def chat_function(message, length_of_the_answer, who_is_next, creativity): # model, tokenizer | |
input_user = message | |
if length_of_the_answer == 'short': | |
next_len = '1' | |
elif length_of_the_answer == 'medium': | |
next_len = '2' | |
elif length_of_the_answer == 'long': | |
next_len = '3' | |
else: | |
next_len = '-' | |
print(who_is_next) | |
if who_is_next == 'Kirill': | |
next_who = 'G' | |
elif who_is_next == 'Me': | |
next_who = 'H' | |
history = gr.get_state() or [] | |
chat_history_ids = torch.zeros((1, 0), dtype=torch.int) if history == [] else torch.tensor(history[-1][2], dtype=torch.long) | |
# encode the new user input, add parameters and return a tensor in Pytorch | |
if len(input_user) != 0: | |
new_user_input_ids = tokenizer.encode(f"|0|{get_length_param(input_user, tokenizer)}|" \ | |
+ input_user + tokenizer.eos_token, return_tensors="pt") | |
# append the new user input tokens to the chat history | |
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) | |
else: | |
input_user = '-' | |
if next_who == "G": | |
# encode the new user input, add parameters and return a tensor in Pytorch | |
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt") | |
# append the new user input tokens to the chat history | |
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) | |
print(tokenizer.decode(chat_history_ids[-1])) # uncomment to see full gpt input | |
# save previous len | |
input_len = chat_history_ids.shape[-1] | |
# generated a response; PS you can read about the parameters at hf.co/blog/how-to-generate | |
chat_history_ids = model.generate( | |
chat_history_ids, | |
num_return_sequences=1, # use for more variants, but have to print [i] | |
max_length=512, | |
no_repeat_ngram_size=3, | |
do_sample=True, | |
top_k=50, | |
top_p=0.9, | |
temperature = float(creativity), # 0 for greedy | |
mask_token_id=tokenizer.mask_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
unk_token_id=tokenizer.unk_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
device='cpu' | |
) | |
response = tokenizer.decode(chat_history_ids[:, input_len:][0], skip_special_tokens=True) | |
else: | |
response = '-' | |
history.append((input_user, response, chat_history_ids.tolist())) | |
gr.set_state(history) | |
html = "<div class='chatbot'>" | |
for user_msg, resp_msg, _ in history: | |
if user_msg != '-': | |
html += f"<div class='user_msg'>{user_msg}</div>" | |
if resp_msg != '-': | |
html += f"<div class='resp_msg'>{resp_msg}</div>" | |
html += "</div>" | |
return html | |
# Download checkpoint: | |
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram-6ep" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
model = AutoModelForCausalLM.from_pretrained(checkpoint) | |
model = model.eval() | |
# Gradio | |
checkbox_group = gr.inputs.CheckboxGroup(['Kirill', 'Me'], default=['Kirill'], type="value", label=None) | |
title = "Chat with Kirill (in Russian)" | |
description = "Тут можно поболтать со мной. Но вместо меня бот. Оставь message пустым, чтобы Кирилл продолжил говорить. Подбробнее о технике по ссылке внизу." | |
article = "<p style='text-align: center'><a href='https://github.com/Kirili4ik/ruDialoGpt3-finetune-colab'>Github with fine-tuning GPT-2 on your chat</a></p>" | |
examples = [ | |
["Привет, как дела?", 'medium', 'Kirill', 0.5], | |
["Сколько тебе лет?", 'medium', 'Kirill', 0.3], | |
] | |
iface = gr.Interface(chat_function, | |
[ | |
"text", | |
gr.inputs.Radio(["short", "medium", "long"], default='medium'), | |
gr.inputs.Radio(["Kirill", "Me"], default='Kirill'), | |
gr.inputs.Slider(0, 1, default=0.5) | |
], | |
"html", | |
title=title, description=description, article=article, examples=examples, | |
css= """ | |
.chatbox {display:flex;flex-direction:column} | |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} | |
.user_msg {background-color:cornflowerblue;color:white;align-self:start} | |
.resp_msg {background-color:lightgray;align-self:self-end} | |
""", | |
allow_screenshot=True, | |
allow_flagging=False | |
) | |
if __name__ == "__main__": | |
iface.launch() | |