Kiran5 commited on
Commit
a1bf5c4
·
1 Parent(s): 0bb06a1

Add application file

Browse files
Files changed (34) hide show
  1. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/build_config.yaml +14 -0
  2. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/create_wheel_file.py +44 -0
  3. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.5-py3-none-any.whl +0 -0
  4. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.5.tar.gz +3 -0
  5. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.6-py3-none-any.whl +0 -0
  6. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.6.tar.gz +3 -0
  7. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.1.0-py3-none-any.whl +0 -0
  8. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.1.0.tar.gz +3 -0
  9. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/PKG-INFO +12 -0
  10. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/SOURCES.txt +64 -0
  11. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/dependency_links.txt +1 -0
  12. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/top_level.txt +1 -0
  13. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/__init__.py +52 -0
  14. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analysis_explanation.py +64 -0
  15. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analyzer_engine.py +372 -0
  16. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analyzer_request.py +36 -0
  17. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/app_tracer.py +27 -0
  18. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/batch_analyzer_engine.py +145 -0
  19. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/dict_analyzer_result.py +29 -0
  20. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/entity_recognizer.py +199 -0
  21. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/local_recognizer.py +7 -0
  22. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/__init__.py +19 -0
  23. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/client_nlp_engine.py +108 -0
  24. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/nlp_artifacts.py +74 -0
  25. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/nlp_engine.py +42 -0
  26. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/spacy_nlp_engine.py +96 -0
  27. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/stanza_nlp_engine.py +39 -0
  28. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/pattern.py +45 -0
  29. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/pattern_recognizer.py +253 -0
  30. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/recognizer_registry/__init__.py +4 -0
  31. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/recognizer_result.py +189 -0
  32. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/remote_recognizer.py +57 -0
  33. presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/setup.py +1 -0
  34. presidio_analyzer/presidio_analyzer/Package_to_wheel.txt +5 -0
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/build_config.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -
2
+ name: presidio_analyzer
3
+ version: 4.1.0
4
+ build: 0.0.1
5
+ author: Amit Hegde
6
+ author_email: amitumamaheshwar.h@infosys.com
7
+ description: Infosys Intelligent Assistant
8
+ long_description: Infosys Intelligent Assistant
9
+ classifiers: ["Programming Language :: Python :: 3",
10
+ "License :: OSI Approved :: MIT License",
11
+ "Operating System :: OS Independent",]
12
+ package_dir: {"": "presidio_analyzer"}
13
+ packages: presidio_analyzer
14
+ python_requires: ['>=3.6']
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/create_wheel_file.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __copyright__ = """ 2020 - 2021 Infosys Limited, Bangalore, India. All Rights Reserved.
2
+ Version: 2.5.0.0
3
+ Except for any free or open source software components embedded in this Infosys proprietary software program (“Program”), this Program is protected by copyright laws, international treaties and other pending or existing intellectual property rights in India, the United States and other countries.
4
+ Except as expressly permitted, any unauthorized reproduction, storage, transmission in any form or by any means (including without limitation electronic, mechanical, printing, photocopying, recording or otherwise), or any distribution of this Program, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the maximum extent possible under the law.
5
+ """
6
+ import yaml
7
+ import subprocess
8
+ import os
9
+ with open(r'.\build_config.yaml') as build_file:
10
+ build_config_list = yaml.safe_load(build_file)
11
+
12
+
13
+ for build_config in build_config_list:
14
+
15
+ try:
16
+ print(build_config)
17
+
18
+ if os.path.exists(f"./{build_config['packages']}"):
19
+
20
+ setup_str = f"import setuptools\r" \
21
+ f"setuptools.setup(\r \
22
+ name='{build_config['name']}',\r \
23
+ version='{build_config['version']}',\r \
24
+ author='{build_config['author']}',\r \
25
+ author_email='{build_config['author_email']}',\r \
26
+ description='{build_config['description']}',\r \
27
+ long_description='{build_config['long_description']}',\r \
28
+ classifiers={build_config['classifiers']},\r \
29
+ package_dir={build_config['package_dir']},\r \
30
+ packages=setuptools.find_packages(where='{build_config['packages']}'),\r \
31
+ python_requires='{build_config['python_requires'][0]}',\r \
32
+ )"
33
+
34
+ with open('setup.py','w') as file:
35
+ file.write(setup_str)
36
+
37
+ subprocess.run(["python", "-m","build"])
38
+ wheel_file = f"{build_config['name']}-{build_config['version']}_build_{build_config['build']}-py3-none-any.whl"
39
+ print(f"wheel_file: {wheel_file}")
40
+ subprocess.run(["python", "-m", "pyc_wheel", f"dist\{wheel_file}"])
41
+ else:
42
+ print(f"Path does not exist ./{build_config['packages']}")
43
+ except Exception as e:
44
+ print(e)
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.5-py3-none-any.whl ADDED
Binary file (78.9 kB). View file
 
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.5.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:effdee5c88badc2a4605dcabc7fe1ff43df586df0a7c2be3f4dbc4d440c7e4d6
3
+ size 44375
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.6-py3-none-any.whl ADDED
Binary file (79.1 kB). View file
 
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.0.6.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49ca4ee3acda590bb69b68697e02cbfc81b89bd8dcfcaf9ff90b07fec062515
3
+ size 44656
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.1.0-py3-none-any.whl ADDED
Binary file (79.1 kB). View file
 
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/dist/presidio_analyzer-4.1.0.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:595ba3a58a473cc94a2a5c421eea075c5db52cb0181335a92f3a222f5cc76736
3
+ size 44675
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/PKG-INFO ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: presidio_analyzer
3
+ Version: 4.1.0
4
+ Summary: Infosys Intelligent Assistant
5
+ Author: Amit Hegde
6
+ Author-email: amitumamaheshwar.h@infosys.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+
12
+ Infosys Intelligent Assistant
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ setup.py
2
+ presidio_analyzer/presidio_analyzer/__init__.py
3
+ presidio_analyzer/presidio_analyzer/analysis_explanation.py
4
+ presidio_analyzer/presidio_analyzer/analyzer_engine.py
5
+ presidio_analyzer/presidio_analyzer/analyzer_request.py
6
+ presidio_analyzer/presidio_analyzer/app_tracer.py
7
+ presidio_analyzer/presidio_analyzer/batch_analyzer_engine.py
8
+ presidio_analyzer/presidio_analyzer/dict_analyzer_result.py
9
+ presidio_analyzer/presidio_analyzer/entity_recognizer.py
10
+ presidio_analyzer/presidio_analyzer/local_recognizer.py
11
+ presidio_analyzer/presidio_analyzer/pattern.py
12
+ presidio_analyzer/presidio_analyzer/pattern_recognizer.py
13
+ presidio_analyzer/presidio_analyzer/recognizer_result.py
14
+ presidio_analyzer/presidio_analyzer/remote_recognizer.py
15
+ presidio_analyzer/presidio_analyzer.egg-info/PKG-INFO
16
+ presidio_analyzer/presidio_analyzer.egg-info/SOURCES.txt
17
+ presidio_analyzer/presidio_analyzer.egg-info/dependency_links.txt
18
+ presidio_analyzer/presidio_analyzer.egg-info/top_level.txt
19
+ presidio_analyzer/presidio_analyzer/context_aware_enhancers/__init__.py
20
+ presidio_analyzer/presidio_analyzer/context_aware_enhancers/context_aware_enhancer.py
21
+ presidio_analyzer/presidio_analyzer/context_aware_enhancers/lemma_context_aware_enhancer.py
22
+ presidio_analyzer/presidio_analyzer/nlp_engine/__init__.py
23
+ presidio_analyzer/presidio_analyzer/nlp_engine/client_nlp_engine.py
24
+ presidio_analyzer/presidio_analyzer/nlp_engine/nlp_artifacts.py
25
+ presidio_analyzer/presidio_analyzer/nlp_engine/nlp_engine.py
26
+ presidio_analyzer/presidio_analyzer/nlp_engine/nlp_engine_provider.py
27
+ presidio_analyzer/presidio_analyzer/nlp_engine/spacy_nlp_engine.py
28
+ presidio_analyzer/presidio_analyzer/nlp_engine/stanza_nlp_engine.py
29
+ presidio_analyzer/presidio_analyzer/nlp_engine/transformers_nlp_engine.py
30
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/Aadhaar_Number.py
31
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/PAN_Number.py
32
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/__init__.py
33
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/au_abn_recognizer.py
34
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/au_acn_recognizer.py
35
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/au_medicare_recognizer.py
36
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/au_tfn_recognizer.py
37
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/credit_card_recognizer.py
38
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/crypto_recognizer.py
39
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/data_recognizer.py
40
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/date_recognizer.py
41
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/email_recognizer.py
42
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/es_nif_recognizer.py
43
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/iban_patterns.py
44
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/iban_recognizer.py
45
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/ip_recognizer.py
46
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/it_driver_license_recognizer.py
47
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/it_fiscal_code_recognizer.py
48
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/it_identity_card_recognizer.py
49
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/it_passport_recognizer.py
50
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/it_vat_code.py
51
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/medical_license_recognizer.py
52
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/phone_recognizer.py
53
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/sg_fin_recognizer.py
54
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/spacy_recognizer.py
55
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/stanza_recognizer.py
56
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/transformers_recognizer.py
57
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/uk_nhs_recognizer.py
58
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/url_recognizer.py
59
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/us_driver_license_recognizer.py
60
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/us_itin_recognizer.py
61
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/us_passport_recognizer.py
62
+ presidio_analyzer/presidio_analyzer/predefined_recognizers/us_ssn_recognizer.py
63
+ presidio_analyzer/presidio_analyzer/recognizer_registry/__init__.py
64
+ presidio_analyzer/presidio_analyzer/recognizer_registry/recognizer_registry.py
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ presidio_analyzer
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/__init__.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Presidio analyzer package."""
2
+
3
+ import logging
4
+
5
+ from presidio_analyzer.pattern import Pattern
6
+ from presidio_analyzer.analysis_explanation import AnalysisExplanation
7
+ from presidio_analyzer.recognizer_result import RecognizerResult
8
+ from presidio_analyzer.dict_analyzer_result import DictAnalyzerResult
9
+ from presidio_analyzer.entity_recognizer import EntityRecognizer
10
+ from presidio_analyzer.local_recognizer import LocalRecognizer
11
+ from presidio_analyzer.pattern_recognizer import PatternRecognizer
12
+ from presidio_analyzer.remote_recognizer import RemoteRecognizer
13
+ from presidio_analyzer.recognizer_registry import RecognizerRegistry
14
+ from presidio_analyzer.analyzer_engine import AnalyzerEngine
15
+ from presidio_analyzer.batch_analyzer_engine import BatchAnalyzerEngine
16
+ from presidio_analyzer.analyzer_request import AnalyzerRequest
17
+ from presidio_analyzer.context_aware_enhancers import ContextAwareEnhancer
18
+ from presidio_analyzer.context_aware_enhancers import LemmaContextAwareEnhancer
19
+
20
+
21
+ # Define default loggers behavior
22
+
23
+ # 1. presidio_analyzer logger
24
+
25
+ logging.getLogger("presidio_analyzer").addHandler(logging.NullHandler())
26
+
27
+ # 2. decision_process logger.
28
+ # Setting the decision process trace here as we would want it
29
+ # to be activated using a parameter to AnalyzeEngine and not by default.
30
+
31
+ decision_process_logger = logging.getLogger("decision_process")
32
+ ch = logging.StreamHandler()
33
+ formatter = logging.Formatter("[%(asctime)s][%(name)s][%(levelname)s]%(message)s")
34
+ ch.setFormatter(formatter)
35
+ decision_process_logger.addHandler(ch)
36
+ decision_process_logger.setLevel("INFO")
37
+ __all__ = [
38
+ "Pattern",
39
+ "AnalysisExplanation",
40
+ "RecognizerResult",
41
+ "DictAnalyzerResult",
42
+ "EntityRecognizer",
43
+ "LocalRecognizer",
44
+ "PatternRecognizer",
45
+ "RemoteRecognizer",
46
+ "RecognizerRegistry",
47
+ "AnalyzerEngine",
48
+ "AnalyzerRequest",
49
+ "ContextAwareEnhancer",
50
+ "LemmaContextAwareEnhancer",
51
+ "BatchAnalyzerEngine",
52
+ ]
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analysis_explanation.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+
4
+ class AnalysisExplanation:
5
+ """
6
+ Hold tracing information to explain why PII entities were identified as such.
7
+
8
+ :param recognizer: name of recognizer that made the decision
9
+ :param original_score: recognizer's confidence in result
10
+ :param pattern_name: name of pattern
11
+ (if decision was made by a PatternRecognizer)
12
+ :param pattern: regex pattern that was applied (if PatternRecognizer)
13
+ :param validation_result: result of a validation (e.g. checksum)
14
+ :param textual_explanation: Free text for describing
15
+ a decision of a logic or model
16
+ """
17
+
18
+ def __init__(
19
+ self,
20
+ recognizer: str,
21
+ original_score: float,
22
+ pattern_name: str = None,
23
+ pattern: str = None,
24
+ validation_result: float = None,
25
+ textual_explanation: str = None,
26
+ ):
27
+
28
+ self.recognizer = recognizer
29
+ self.pattern_name = pattern_name
30
+ self.pattern = pattern
31
+ self.original_score = original_score
32
+ self.score = original_score
33
+ self.textual_explanation = textual_explanation
34
+ self.score_context_improvement = 0
35
+ self.supportive_context_word = ""
36
+ self.validation_result = validation_result
37
+
38
+ def __repr__(self):
39
+ """Create string representation of the object."""
40
+ return str(self.__dict__)
41
+
42
+ def set_improved_score(self, score: float) -> None:
43
+ """Update the score and calculate the difference from the original score."""
44
+ self.score = score
45
+ self.score_context_improvement = self.score - self.original_score
46
+
47
+ def set_supportive_context_word(self, word: str) -> None:
48
+ """Set the context word which helped increase the score."""
49
+ self.supportive_context_word = word
50
+
51
+ def append_textual_explanation_line(self, text: str) -> None:
52
+ """Append a new line to textual_explanation field."""
53
+ if self.textual_explanation is None:
54
+ self.textual_explanation = text
55
+ else:
56
+ self.textual_explanation = "{}\n{}".format(self.textual_explanation, text)
57
+
58
+ def to_dict(self) -> Dict:
59
+ """
60
+ Serialize self to dictionary.
61
+
62
+ :return: a dictionary
63
+ """
64
+ return self.__dict__
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analyzer_engine.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ from typing import List, Optional
4
+
5
+ from presidio_analyzer import (
6
+ RecognizerRegistry,
7
+ RecognizerResult,
8
+ EntityRecognizer,
9
+ )
10
+ from presidio_analyzer.app_tracer import AppTracer
11
+ from presidio_analyzer.context_aware_enhancers import (
12
+ ContextAwareEnhancer,
13
+ LemmaContextAwareEnhancer,
14
+ )
15
+ from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider, NlpArtifacts
16
+
17
+ logger = logging.getLogger("presidio_analyzer")
18
+
19
+
20
+ class AnalyzerEngine:
21
+ """
22
+ Entry point for Presidio Analyzer.
23
+
24
+ Orchestrating the detection of PII entities and all related logic.
25
+
26
+ :param registry: instance of type RecognizerRegistry
27
+ :param nlp_engine: instance of type NlpEngine
28
+ (for example SpacyNlpEngine)
29
+ :param app_tracer: instance of type AppTracer, used to trace the logic
30
+ used during each request for interpretability reasons.
31
+ :param log_decision_process: bool,
32
+ defines whether the decision process within the analyzer should be logged or not.
33
+ :param default_score_threshold: Minimum confidence value
34
+ for detected entities to be returned
35
+ :param supported_languages: List of possible languages this engine could be run on.
36
+ Used for loading the right NLP models and recognizers for these languages.
37
+ :param context_aware_enhancer: instance of type ContextAwareEnhancer for enhancing
38
+ confidence score based on context words, (LemmaContextAwareEnhancer will be created
39
+ by default if None passed)
40
+ """
41
+
42
+ def __init__(
43
+ self,
44
+ registry: RecognizerRegistry = None,
45
+ nlp_engine: NlpEngine = None,
46
+ app_tracer: AppTracer = None,
47
+ log_decision_process: bool = False,
48
+ default_score_threshold: float = 0,
49
+ supported_languages: List[str] = None,
50
+ context_aware_enhancer: Optional[ContextAwareEnhancer] = None,
51
+ ):
52
+ if not supported_languages:
53
+ supported_languages = ["en"]
54
+
55
+ if not nlp_engine:
56
+ logger.info("nlp_engine not provided, creating default.")
57
+ provider = NlpEngineProvider()
58
+ nlp_engine = provider.create_engine()
59
+
60
+ if not registry:
61
+ logger.info("registry not provided, creating default.")
62
+ registry = RecognizerRegistry()
63
+ if not app_tracer:
64
+ app_tracer = AppTracer()
65
+ self.app_tracer = app_tracer
66
+
67
+ self.supported_languages = supported_languages
68
+
69
+ self.nlp_engine = nlp_engine
70
+ self.registry = registry
71
+
72
+ # load all recognizers
73
+ if not registry.recognizers:
74
+ registry.load_predefined_recognizers(
75
+ nlp_engine=self.nlp_engine, languages=self.supported_languages
76
+ )
77
+
78
+ self.log_decision_process = log_decision_process
79
+ self.default_score_threshold = default_score_threshold
80
+
81
+ if not context_aware_enhancer:
82
+ logger.debug(
83
+ "context aware enhancer not provided, creating default"
84
+ + " lemma based enhancer."
85
+ )
86
+ context_aware_enhancer = LemmaContextAwareEnhancer()
87
+
88
+ self.context_aware_enhancer = context_aware_enhancer
89
+
90
+ def get_recognizers(self, language: Optional[str] = None) -> List[EntityRecognizer]:
91
+ """
92
+ Return a list of PII recognizers currently loaded.
93
+
94
+ :param language: Return the recognizers supporting a given language.
95
+ :return: List of [Recognizer] as a RecognizersAllResponse
96
+ """
97
+ if not language:
98
+ languages = self.supported_languages
99
+ else:
100
+ languages = [language]
101
+
102
+ recognizers = []
103
+ for language in languages:
104
+ logger.info(f"Fetching all recognizers for language {language}")
105
+ recognizers.extend(
106
+ self.registry.get_recognizers(language=language, all_fields=True)
107
+ )
108
+
109
+ return list(set(recognizers))
110
+
111
+ def get_supported_entities(self, language: Optional[str] = None) -> List[str]:
112
+ """
113
+ Return a list of the entities that can be detected.
114
+
115
+ :param language: Return only entities supported in a specific language.
116
+ :return: List of entity names
117
+ """
118
+ recognizers = self.get_recognizers(language=language)
119
+ supported_entities = []
120
+ for recognizer in recognizers:
121
+ supported_entities.extend(recognizer.get_supported_entities())
122
+
123
+ return list(set(supported_entities))
124
+
125
+ def analyze(
126
+ self,
127
+ text: str,
128
+ language: str,
129
+ entities: Optional[List[str]] = None,
130
+ correlation_id: Optional[str] = None,
131
+ score_threshold: Optional[float] = None,
132
+ return_decision_process: Optional[bool] = False,
133
+ ad_hoc_recognizers: Optional[List[EntityRecognizer]] = None,
134
+ context: Optional[List[str]] = None,
135
+ allow_list: Optional[List[str]] = None,
136
+ nlp_artifacts: Optional[NlpArtifacts] = None,
137
+ ) -> List[RecognizerResult]:
138
+ """
139
+ Find PII entities in text using different PII recognizers for a given language.
140
+
141
+ :param text: the text to analyze
142
+ :param language: the language of the text
143
+ :param entities: List of PII entities that should be looked for in the text.
144
+ If entities=None then all entities are looked for.
145
+ :param correlation_id: cross call ID for this request
146
+ :param score_threshold: A minimum value for which
147
+ to return an identified entity
148
+ :param return_decision_process: Whether the analysis decision process steps
149
+ returned in the response.
150
+ :param ad_hoc_recognizers: List of recognizers which will be used only
151
+ for this specific request.
152
+ :param context: List of context words to enhance confidence score if matched
153
+ with the recognized entity's recognizer context
154
+ :param allow_list: List of words that the user defines as being allowed to keep
155
+ in the text
156
+ :param nlp_artifacts: precomputed NlpArtifacts
157
+ :return: an array of the found entities in the text
158
+
159
+ :example:
160
+
161
+ >>> from presidio_analyzer import AnalyzerEngine
162
+
163
+ >>> # Set up the engine, loads the NLP module (spaCy model by default)
164
+ >>> # and other PII recognizers
165
+ >>> analyzer = AnalyzerEngine()
166
+
167
+ >>> # Call analyzer to get results
168
+ >>> results = analyzer.analyze(text='My phone number is 212-555-5555', entities=['PHONE_NUMBER'], language='en') # noqa D501
169
+ >>> print(results)
170
+ [type: PHONE_NUMBER, start: 19, end: 31, score: 0.85]
171
+ """
172
+ all_fields = not entities
173
+
174
+ recognizers = self.registry.get_recognizers(
175
+ language=language,
176
+ entities=entities,
177
+ all_fields=all_fields,
178
+ ad_hoc_recognizers=ad_hoc_recognizers,
179
+ )
180
+
181
+ if all_fields:
182
+ # Since all_fields=True, list all entities by iterating
183
+ # over all recognizers
184
+ entities = self.get_supported_entities(language=language)
185
+
186
+ # run the nlp pipeline over the given text, store the results in
187
+ # a NlpArtifacts instance
188
+ if not nlp_artifacts:
189
+ nlp_artifacts = self.nlp_engine.process_text(text, language)
190
+
191
+ if self.log_decision_process:
192
+ self.app_tracer.trace(
193
+ correlation_id, "nlp artifacts:" + nlp_artifacts.to_json()
194
+ )
195
+
196
+ results = []
197
+ for recognizer in recognizers:
198
+ # Lazy loading of the relevant recognizers
199
+ if not recognizer.is_loaded:
200
+ recognizer.load()
201
+ recognizer.is_loaded = True
202
+
203
+ # analyze using the current recognizer and append the results
204
+ current_results = recognizer.analyze(
205
+ text=text, entities=entities, nlp_artifacts=nlp_artifacts
206
+ )
207
+
208
+ if current_results:
209
+ # add recognizer name to recognition metadata inside results
210
+ # if not exists
211
+ self.__add_recognizer_id_if_not_exists(current_results, recognizer)
212
+ results.extend(current_results)
213
+
214
+
215
+ results = self._enhance_using_context(
216
+ text, results, nlp_artifacts, recognizers, context
217
+ )
218
+
219
+ if self.log_decision_process:
220
+ self.app_tracer.trace(
221
+ correlation_id,
222
+ json.dumps([str(result.to_dict()) for result in results]),
223
+ )
224
+
225
+ # Remove duplicates or low score results
226
+ results = EntityRecognizer.remove_duplicates(results)
227
+ results = self.__remove_low_scores(results, score_threshold)
228
+
229
+ if allow_list:
230
+ results = self._remove_allow_list(results, allow_list, text)
231
+
232
+ if not return_decision_process:
233
+ results = self.__remove_decision_process(results)
234
+
235
+ return results
236
+
237
+ def _enhance_using_context(
238
+ self,
239
+ text: str,
240
+ raw_results: List[RecognizerResult],
241
+ nlp_artifacts: NlpArtifacts,
242
+ recognizers: List[EntityRecognizer],
243
+ context: Optional[List[str]] = None,
244
+ ) -> List[RecognizerResult]:
245
+ """
246
+ Enhance confidence score using context words.
247
+
248
+ :param text: The actual text that was analyzed
249
+ :param raw_results: Recognizer results which didn't take
250
+ context into consideration
251
+ :param nlp_artifacts: The nlp artifacts contains elements
252
+ such as lemmatized tokens for better
253
+ accuracy of the context enhancement process
254
+ :param recognizers: the list of recognizers
255
+ :param context: list of context words
256
+ """
257
+ results = []
258
+
259
+ for recognizer in recognizers:
260
+ recognizer_results = [
261
+ r
262
+ for r in raw_results
263
+ if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY]
264
+ == recognizer.id
265
+ ]
266
+ other_recognizer_results = [
267
+ r
268
+ for r in raw_results
269
+ if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY]
270
+ != recognizer.id
271
+ ]
272
+
273
+ # enhance score using context in recognizer level if implemented
274
+ recognizer_results = recognizer.enhance_using_context(
275
+ text=text,
276
+ # each recognizer will get access to all recognizer results
277
+ # to allow related entities contex enhancement
278
+ raw_recognizer_results=recognizer_results,
279
+ other_raw_recognizer_results=other_recognizer_results,
280
+ nlp_artifacts=nlp_artifacts,
281
+ context=context,
282
+ )
283
+
284
+ results.extend(recognizer_results)
285
+
286
+ # Update results in case surrounding words or external context are relevant to
287
+ # the context words.
288
+ results = self.context_aware_enhancer.enhance_using_context(
289
+ text=text,
290
+ raw_results=results,
291
+ nlp_artifacts=nlp_artifacts,
292
+ recognizers=recognizers,
293
+ context=context,
294
+ )
295
+
296
+ return results
297
+
298
+ def __remove_low_scores(
299
+ self, results: List[RecognizerResult], score_threshold: float = None
300
+ ) -> List[RecognizerResult]:
301
+ """
302
+ Remove results for which the confidence is lower than the threshold.
303
+
304
+ :param results: List of RecognizerResult
305
+ :param score_threshold: float value for minimum possible confidence
306
+ :return: List[RecognizerResult]
307
+ """
308
+ if score_threshold is None:
309
+ score_threshold = self.default_score_threshold
310
+
311
+ new_results = [result for result in results if result.score >= score_threshold]
312
+ return new_results
313
+
314
+ @staticmethod
315
+ def _remove_allow_list(
316
+ results: List[RecognizerResult], allow_list: List[str], text: str
317
+ ) -> List[RecognizerResult]:
318
+ """
319
+ Remove results which are part of the allow list.
320
+
321
+ :param results: List of RecognizerResult
322
+ :param allow_list: list of allowed terms
323
+ :param text: the text to analyze
324
+ :return: List[RecognizerResult]
325
+ """
326
+ new_results = []
327
+ for result in results:
328
+ word = text[result.start : result.end]
329
+ # if the word is not specified to be allowed, keep in the PII entities
330
+ if word not in allow_list:
331
+ new_results.append(result)
332
+
333
+ return new_results
334
+
335
+ @staticmethod
336
+ def __add_recognizer_id_if_not_exists(
337
+ results: List[RecognizerResult], recognizer: EntityRecognizer
338
+ ):
339
+ """Ensure recognition metadata with recognizer id existence.
340
+
341
+ Ensure recognizer result list contains recognizer id inside recognition
342
+ metadata dictionary, and if not create it. recognizer_id is needed
343
+ for context aware enhancement.
344
+
345
+ :param results: List of RecognizerResult
346
+ :param recognizer: Entity recognizer
347
+ """
348
+ for result in results:
349
+ if not result.recognition_metadata:
350
+ result.recognition_metadata = dict()
351
+ if (
352
+ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY
353
+ not in result.recognition_metadata
354
+ ):
355
+ result.recognition_metadata[
356
+ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY
357
+ ] = recognizer.id
358
+ if RecognizerResult.RECOGNIZER_NAME_KEY not in result.recognition_metadata:
359
+ result.recognition_metadata[
360
+ RecognizerResult.RECOGNIZER_NAME_KEY
361
+ ] = recognizer.name
362
+
363
+ @staticmethod
364
+ def __remove_decision_process(
365
+ results: List[RecognizerResult],
366
+ ) -> List[RecognizerResult]:
367
+ """Remove decision process / analysis explanation from response."""
368
+
369
+ for result in results:
370
+ result.analysis_explanation = None
371
+
372
+ return results
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/analyzer_request.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ from presidio_analyzer import PatternRecognizer
4
+
5
+
6
+ class AnalyzerRequest:
7
+ """
8
+ Analyzer request data.
9
+
10
+ :param req_data: A request dictionary with the following fields:
11
+ text: the text to analyze
12
+ language: the language of the text
13
+ entities: List of PII entities that should be looked for in the text.
14
+ If entities=None then all entities are looked for.
15
+ correlation_id: cross call ID for this request
16
+ score_threshold: A minimum value for which to return an identified entity
17
+ log_decision_process: Should the decision points within the analysis
18
+ be logged
19
+ return_decision_process: Should the decision points within the analysis
20
+ returned as part of the response
21
+ """
22
+
23
+ def __init__(self, req_data: Dict):
24
+ self.text = req_data.get("text")
25
+ self.language = req_data.get("language")
26
+ self.entities = req_data.get("entities")
27
+ self.correlation_id = req_data.get("correlation_id")
28
+ self.score_threshold = req_data.get("score_threshold")
29
+ self.return_decision_process = req_data.get("return_decision_process")
30
+ ad_hoc_recognizers = req_data.get("ad_hoc_recognizers")
31
+ self.ad_hoc_recognizers = []
32
+ if ad_hoc_recognizers:
33
+ self.ad_hoc_recognizers = [
34
+ PatternRecognizer.from_dict(rec) for rec in ad_hoc_recognizers
35
+ ]
36
+ self.context = req_data.get("context")
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/app_tracer.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+
4
+ class AppTracer:
5
+ """
6
+ Allow logging/tracing the system's decisions.
7
+
8
+ Relevant in cases where we want to know which modules were used for detection,
9
+ which logic was utilized, what results were given and potentially why.
10
+ This can be useful for analyzing the detection accuracy of the system.
11
+ :param enabled: Whether tracing should be activated.
12
+ """
13
+
14
+ def __init__(self, enabled: bool = True):
15
+ self.logger = logging.getLogger("decision_process")
16
+ self.enabled = enabled
17
+
18
+ def trace(self, request_id: str, trace_data: str) -> None:
19
+ """
20
+ Write a value associated with a decision for a specific request into the trace.
21
+
22
+ Tracing for further inspection if needed.
23
+ :param request_id: A unique ID, to correlate across calls.
24
+ :param trace_data: A string to write to the log.
25
+ """
26
+ if self.enabled:
27
+ self.logger.info("[%s][%s]", request_id, trace_data)
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/batch_analyzer_engine.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import List, Iterable, Dict, Union, Any, Optional, Iterator, Tuple
3
+
4
+ from presidio_analyzer import DictAnalyzerResult, RecognizerResult, AnalyzerEngine
5
+ from presidio_analyzer.nlp_engine import NlpArtifacts
6
+
7
+ logger = logging.getLogger("presidio_analyzer")
8
+
9
+
10
+ class BatchAnalyzerEngine:
11
+ """
12
+ Batch analysis of documents (tables, lists, dicts).
13
+
14
+ Wrapper class to run Presidio Analyzer Engine on multiple values,
15
+ either lists/iterators of strings, or dictionaries.
16
+
17
+ :param: analyzer_engine: AnalyzerEngine instance to use
18
+ for handling the values in those collections.
19
+ """
20
+
21
+ def __init__(self, analyzer_engine: Optional[AnalyzerEngine] = None):
22
+
23
+ self.analyzer_engine = analyzer_engine
24
+ if not analyzer_engine:
25
+ self.analyzer_engine = AnalyzerEngine()
26
+
27
+ def analyze_iterator(
28
+ self,
29
+ texts: Iterable[Union[str, bool, float, int]],
30
+ language: str,
31
+ **kwargs,
32
+ ) -> List[List[RecognizerResult]]:
33
+ """
34
+ Analyze an iterable of strings.
35
+
36
+ :param texts: An list containing strings to be analyzed.
37
+ :param language: Input language
38
+ :param kwargs: Additional parameters for the `AnalyzerEngine.analyze` method.
39
+ """
40
+
41
+ # validate types
42
+ texts = self._validate_types(texts)
43
+
44
+ # Process the texts as batch for improved performance
45
+ nlp_artifacts_batch: Iterator[
46
+ Tuple[str, NlpArtifacts]
47
+ ] = self.analyzer_engine.nlp_engine.process_batch(
48
+ texts=texts, language=language
49
+ )
50
+
51
+ list_results = []
52
+ for text, nlp_artifacts in nlp_artifacts_batch:
53
+ results = self.analyzer_engine.analyze(
54
+ text=str(text), nlp_artifacts=nlp_artifacts, language=language, **kwargs
55
+ )
56
+
57
+ list_results.append(results)
58
+
59
+ return list_results
60
+
61
+ def analyze_dict(
62
+ self,
63
+ input_dict: Dict[str, Union[Any, Iterable[Any]]],
64
+ language: str,
65
+ keys_to_skip: Optional[List[str]] = None,
66
+ **kwargs,
67
+ ) -> Iterator[DictAnalyzerResult]:
68
+ """
69
+ Analyze a dictionary of keys (strings) and values/iterable of values.
70
+
71
+ Non-string values are returned as is.
72
+
73
+ :param input_dict: The input dictionary for analysis
74
+ :param language: Input language
75
+ :param keys_to_skip: Keys to ignore during analysis
76
+ :param kwargs: Additional keyword arguments
77
+ for the `AnalyzerEngine.analyze` method.
78
+ Use this to pass arguments to the analyze method,
79
+ such as `ad_hoc_recognizers`, `context`, `return_decision_process`.
80
+ See `AnalyzerEngine.analyze` for the full list.
81
+ """
82
+
83
+ context = []
84
+ if "context" in kwargs:
85
+ context = kwargs["context"]
86
+ del kwargs["context"]
87
+
88
+ if not keys_to_skip:
89
+ keys_to_skip = []
90
+
91
+ for key, value in input_dict.items():
92
+ if not value or key in keys_to_skip:
93
+ yield DictAnalyzerResult(key=key, value=value, recognizer_results=[])
94
+ continue # skip this key as requested
95
+
96
+ # Add the key as an additional context
97
+ specific_context = context[:]
98
+ specific_context.append(key)
99
+
100
+ if type(value) in (str, int, bool, float):
101
+ results: List[RecognizerResult] = self.analyzer_engine.analyze(
102
+ text=str(value), language=language, context=[key], **kwargs
103
+ )
104
+ elif isinstance(value, dict):
105
+ new_keys_to_skip = self._get_nested_keys_to_skip(key, keys_to_skip)
106
+ results = self.analyze_dict(
107
+ input_dict=value,
108
+ language=language,
109
+ context=specific_context,
110
+ keys_to_skip=new_keys_to_skip,
111
+ **kwargs,
112
+ )
113
+ elif isinstance(value, Iterable):
114
+ # Recursively iterate nested dicts
115
+
116
+ results: List[List[RecognizerResult]] = self.analyze_iterator(
117
+ texts=value,
118
+ language=language,
119
+ context=specific_context,
120
+ **kwargs,
121
+ )
122
+ else:
123
+ raise ValueError(f"type {type(value)} is unsupported.")
124
+
125
+ yield DictAnalyzerResult(key=key, value=value, recognizer_results=results)
126
+
127
+ @staticmethod
128
+ def _validate_types(value_iterator: Iterable[Any]) -> Iterator[Any]:
129
+ for val in value_iterator:
130
+ if val and not type(val) in (int, float, bool, str):
131
+ err_msg = (
132
+ "Analyzer.analyze_iterator only works "
133
+ "on primitive types (int, float, bool, str). "
134
+ "Lists of objects are not yet supported."
135
+ )
136
+ logger.error(err_msg)
137
+ raise ValueError(err_msg)
138
+ yield val
139
+
140
+ @staticmethod
141
+ def _get_nested_keys_to_skip(key, keys_to_skip):
142
+ new_keys_to_skip = [
143
+ k.replace(f"{key}.", "") for k in keys_to_skip if k.startswith(key)
144
+ ]
145
+ return new_keys_to_skip
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/dict_analyzer_result.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import List, Union, Iterator
3
+
4
+ from presidio_analyzer import RecognizerResult
5
+
6
+
7
+ @dataclass
8
+ class DictAnalyzerResult:
9
+ """
10
+ Data class for holding the output of the Presidio Analyzer on dictionaries.
11
+
12
+ :param key: key in dictionary
13
+ :param value: value to run analysis on (either string or list of strings)
14
+ :param recognizer_results: Analyzer output for one value.
15
+ Could be either:
16
+ - A list of recognizer results if the input is one string
17
+ - A list of lists of recognizer results, if the input is a list of strings.
18
+ - An iterator of a DictAnalyzerResult, if the input is a dictionary.
19
+ In this case the recognizer_results would be the iterator
20
+ of the DictAnalyzerResults next level in the dictionary.
21
+ """
22
+
23
+ key: str
24
+ value: Union[str, List[str], dict]
25
+ recognizer_results: Union[
26
+ List[RecognizerResult],
27
+ List[List[RecognizerResult]],
28
+ Iterator["DictAnalyzerResult"],
29
+ ]
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/entity_recognizer.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from abc import abstractmethod
3
+ from typing import List, Dict, Optional
4
+
5
+ from presidio_analyzer import RecognizerResult
6
+ from presidio_analyzer.nlp_engine import NlpArtifacts
7
+
8
+ logger = logging.getLogger("presidio_analyzer")
9
+
10
+
11
+ class EntityRecognizer:
12
+ """
13
+ A class representing an abstract PII entity recognizer.
14
+
15
+ EntityRecognizer is an abstract class to be inherited by
16
+ Recognizers which hold the logic for recognizing specific PII entities.
17
+
18
+ EntityRecognizer exposes a method called enhance_using_context which
19
+ can be overridden in case a custom context aware enhancement is needed
20
+ in derived class of a recognizer.
21
+
22
+ :param supported_entities: the entities supported by this recognizer
23
+ (for example, phone number, address, etc.)
24
+ :param supported_language: the language supported by this recognizer.
25
+ The supported langauge code is iso6391Name
26
+ :param name: the name of this recognizer (optional)
27
+ :param version: the recognizer current version
28
+ :param context: a list of words which can help boost confidence score
29
+ when they appear in context of the matched entity
30
+ """
31
+
32
+ MIN_SCORE = 0
33
+ MAX_SCORE = 1.0
34
+
35
+ def __init__(
36
+ self,
37
+ supported_entities: List[str],
38
+ name: str = None,
39
+ supported_language: str = "en",
40
+ version: str = "0.0.1",
41
+ context: Optional[List[str]] = None,
42
+ ):
43
+
44
+ self.supported_entities = supported_entities
45
+
46
+ if name is None:
47
+ self.name = self.__class__.__name__ # assign class name as name
48
+ else:
49
+ self.name = name
50
+
51
+ self._id = f"{self.name}_{id(self)}"
52
+
53
+ self.supported_language = supported_language
54
+ self.version = version
55
+ self.is_loaded = False
56
+ self.context = context if context else []
57
+
58
+ self.load()
59
+ logger.info("Loaded recognizer: %s", self.name)
60
+ self.is_loaded = True
61
+
62
+ @property
63
+ def id(self):
64
+ """Return a unique identifier of this recognizer."""
65
+
66
+ return self._id
67
+
68
+ @abstractmethod
69
+ def load(self) -> None:
70
+ """
71
+ Initialize the recognizer assets if needed.
72
+
73
+ (e.g. machine learning models)
74
+ """
75
+
76
+ @abstractmethod
77
+ def analyze(
78
+ self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts
79
+ ) -> List[RecognizerResult]:
80
+ """
81
+ Analyze text to identify entities.
82
+
83
+ :param text: The text to be analyzed
84
+ :param entities: The list of entities this recognizer is able to detect
85
+ :param nlp_artifacts: A group of attributes which are the result of
86
+ an NLP process over the input text.
87
+ :return: List of results detected by this recognizer.
88
+ """
89
+ return None
90
+
91
+ def enhance_using_context(
92
+ self,
93
+ text: str,
94
+ raw_recognizer_results: List[RecognizerResult],
95
+ other_raw_recognizer_results: List[RecognizerResult],
96
+ nlp_artifacts: NlpArtifacts,
97
+ context: Optional[List[str]] = None,
98
+ ) -> List[RecognizerResult]:
99
+ """Enhance confidence score using context of the entity.
100
+
101
+ Override this method in derived class in case a custom logic
102
+ is needed, otherwise return value will be equal to
103
+ raw_results.
104
+
105
+ in case a result score is boosted, derived class need to update
106
+ result.recognition_metadata[RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY]
107
+
108
+ :param text: The actual text that was analyzed
109
+ :param raw_recognizer_results: This recognizer's results, to be updated
110
+ based on recognizer specific context.
111
+ :param other_raw_recognizer_results: Other recognizer results matched in
112
+ the given text to allow related entity context enhancement
113
+ :param nlp_artifacts: The nlp artifacts contains elements
114
+ such as lemmatized tokens for better
115
+ accuracy of the context enhancement process
116
+ :param context: list of context words
117
+ """
118
+ return raw_recognizer_results
119
+
120
+ def get_supported_entities(self) -> List[str]:
121
+ """
122
+ Return the list of entities this recognizer can identify.
123
+
124
+ :return: A list of the supported entities by this recognizer
125
+ """
126
+ return self.supported_entities
127
+
128
+ def get_supported_language(self) -> str:
129
+ """
130
+ Return the language this recognizer can support.
131
+
132
+ :return: A list of the supported language by this recognizer
133
+ """
134
+ return self.supported_language
135
+
136
+ def get_version(self) -> str:
137
+ """
138
+ Return the version of this recognizer.
139
+
140
+ :return: The current version of this recognizer
141
+ """
142
+ return self.version
143
+
144
+ def to_dict(self) -> Dict:
145
+ """
146
+ Serialize self to dictionary.
147
+
148
+ :return: a dictionary
149
+ """
150
+ return_dict = {
151
+ "supported_entities": self.supported_entities,
152
+ "supported_language": self.supported_language,
153
+ "name": self.name,
154
+ "version": self.version,
155
+ }
156
+ return return_dict
157
+
158
+ @classmethod
159
+ def from_dict(cls, entity_recognizer_dict: Dict) -> "EntityRecognizer":
160
+ """
161
+ Create EntityRecognizer from a dict input.
162
+
163
+ :param entity_recognizer_dict: Dict containing keys and values for instantiation
164
+ """
165
+ return cls(**entity_recognizer_dict)
166
+
167
+ @staticmethod
168
+ def remove_duplicates(results: List[RecognizerResult]) -> List[RecognizerResult]:
169
+ """
170
+ Remove duplicate results.
171
+
172
+ Remove duplicates in case the two results
173
+ have identical start and ends and types.
174
+ :param results: List[RecognizerResult]
175
+ :return: List[RecognizerResult]
176
+ """
177
+ results = list(set(results))
178
+ results = sorted(results, key=lambda x: (-x.score, x.start, -(x.end - x.start)))
179
+ filtered_results = []
180
+
181
+ for result in results:
182
+ if result.score == 0:
183
+ continue
184
+
185
+ to_keep = result not in filtered_results # equals based comparison
186
+ if to_keep:
187
+ for filtered in filtered_results:
188
+ # If result is contained in one of the other results
189
+ if (
190
+ result.contained_in(filtered)
191
+ and result.entity_type == filtered.entity_type
192
+ ):
193
+ to_keep = False
194
+ break
195
+
196
+ if to_keep:
197
+ filtered_results.append(result)
198
+
199
+ return filtered_results
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/local_recognizer.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from abc import ABC
2
+
3
+ from presidio_analyzer import EntityRecognizer
4
+
5
+
6
+ class LocalRecognizer(ABC, EntityRecognizer):
7
+ """PII entity recognizer which runs on the same process as the AnalyzerEngine."""
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """NLP engine package. Performs text pre-processing."""
2
+
3
+ from .nlp_artifacts import NlpArtifacts
4
+ from .nlp_engine import NlpEngine
5
+ from .spacy_nlp_engine import SpacyNlpEngine
6
+ from .client_nlp_engine import ClientNlpEngine
7
+ from .stanza_nlp_engine import StanzaNlpEngine
8
+ from .transformers_nlp_engine import TransformersNlpEngine
9
+ from .nlp_engine_provider import NlpEngineProvider
10
+
11
+ __all__ = [
12
+ "NlpArtifacts",
13
+ "NlpEngine",
14
+ "SpacyNlpEngine",
15
+ "ClientNlpEngine",
16
+ "StanzaNlpEngine",
17
+ "NlpEngineProvider",
18
+ "TransformersNlpEngine",
19
+ ]
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/client_nlp_engine.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ # import logging
3
+
4
+ try:
5
+ import client
6
+ import spacy_client
7
+ except ImportError:
8
+ client = None
9
+
10
+ from typing import Optional, Dict, Iterator, Tuple, Union, List
11
+
12
+ import spacy
13
+ from spacy.language import Language
14
+ from spacy.tokens import Doc
15
+
16
+ from presidio_analyzer.nlp_engine import NlpArtifacts, NlpEngine
17
+
18
+ logger = logging.getLogger("presidio_analyzer")
19
+
20
+
21
+ class ClientNlpEngine(NlpEngine):
22
+ """
23
+ SpacyNlpEngine is an abstraction layer over the nlp module.
24
+
25
+ It provides processing functionality as well as other queries
26
+ on tokens.
27
+ The SpacyNlpEngine uses SpaCy as its NLP module
28
+ """
29
+
30
+
31
+ engine_name="spacy"
32
+
33
+ is_available = bool(spacy)
34
+
35
+
36
+ def __init__(self, models: Optional[Dict[str, str]] = None):
37
+ """
38
+ Initialize a wrapper on spaCy functionality.
39
+
40
+ :param models: Dictionary with the name of the spaCy model per language.
41
+ For example: models = {"en": "en_core_web_lg"}
42
+ """
43
+ if not models:
44
+ models = {"en": "en_core_web_lg"}
45
+ logger.debug(f"Loading SpaCy models: {models.values()}")
46
+
47
+ self.nlp = {
48
+ lang_code: spacy.load(model_name, disable=["parser"])
49
+ for lang_code, model_name in models.items()
50
+ }
51
+
52
+
53
+
54
+ def process_text(self, text: str, language: str) -> NlpArtifacts:
55
+ """Execute the SpaCy NLP pipeline on the given text and language."""
56
+
57
+ doc = self.nlp[language](text)
58
+ return self._doc_to_nlp_artifact(doc, language)
59
+
60
+ def process_batch(
61
+ self,
62
+ texts: Union[List[str], List[Tuple[str, object]]],
63
+ language: str,
64
+ as_tuples: bool = False,
65
+ ) -> Iterator[Optional[NlpArtifacts]]:
66
+ """Execute the NLP pipeline on a batch of texts using spacy pipe."""
67
+ texts = (str(text) for text in texts)
68
+ docs = self.nlp[language].pipe(texts, as_tuples=as_tuples)
69
+ for doc in docs:
70
+ yield doc.text, self._doc_to_nlp_artifact(doc, language)
71
+
72
+ def is_stopword(self, word: str, language: str) -> bool:
73
+ """
74
+ Return true if the given word is a stop word.
75
+
76
+ (within the given language)
77
+ """
78
+ return self.nlp[language].vocab[word].is_stop
79
+
80
+ def is_punct(self, word: str, language: str) -> bool:
81
+ """
82
+ Return true if the given word is a punctuation word.
83
+
84
+ (within the given language).
85
+ """
86
+ return self.nlp[language].vocab[word].is_punct
87
+
88
+ def get_nlp(self, language: str) -> Language:
89
+ """
90
+ Return the language model loaded for a language.
91
+
92
+ :param language: Name of language
93
+ :return: Language model from spaCy
94
+ """
95
+ return self.nlp[language]
96
+
97
+ def _doc_to_nlp_artifact(self, doc: Doc, language: str) -> NlpArtifacts:
98
+ lemmas = [token.lemma_ for token in doc]
99
+ tokens_indices = [token.idx for token in doc]
100
+ entities = doc.ents
101
+ return NlpArtifacts(
102
+ entities=entities,
103
+ tokens=doc,
104
+ tokens_indices=tokens_indices,
105
+ lemmas=lemmas,
106
+ nlp_engine=self,
107
+ language=language,
108
+ )
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/nlp_artifacts.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import List
3
+
4
+ from spacy.tokens import Doc, Span
5
+
6
+
7
+ class NlpArtifacts:
8
+ """
9
+ NlpArtifacts is an abstraction layer over the results of an NLP pipeline.
10
+
11
+ processing over a given text, it holds attributes such as entities,
12
+ tokens and lemmas which can be used by any recognizer
13
+ """
14
+
15
+ def __init__(
16
+ self,
17
+ entities: List[Span],
18
+ tokens: Doc,
19
+ tokens_indices: List[int],
20
+ lemmas: List[str],
21
+ nlp_engine, # noqa ANN001
22
+ language: str,
23
+ ):
24
+ self.entities = entities
25
+ self.tokens = tokens
26
+ self.lemmas = lemmas
27
+ self.tokens_indices = tokens_indices
28
+ self.keywords = self.set_keywords(nlp_engine, lemmas, language)
29
+ self.nlp_engine = nlp_engine
30
+
31
+ @staticmethod
32
+ def set_keywords(
33
+ nlp_engine, lemmas: List[str], language: str # noqa ANN001
34
+ ) -> List[str]:
35
+ """
36
+ Return keywords fpr text.
37
+
38
+ Extracts lemmas with certain conditions as keywords.
39
+ """
40
+ if not nlp_engine:
41
+ return []
42
+ keywords = [
43
+ k.lower()
44
+ for k in lemmas
45
+ if not nlp_engine.is_stopword(k, language)
46
+ and not nlp_engine.is_punct(k, language)
47
+ and k != "-PRON-"
48
+ and k != "be"
49
+ ]
50
+
51
+ # best effort, try even further to break tokens into sub tokens,
52
+ # this can result in reducing false negatives
53
+ keywords = [i.split(":") for i in keywords]
54
+
55
+ # splitting the list can, if happened, will result in list of lists,
56
+ # we flatten the list
57
+ keywords = [item for sublist in keywords for item in sublist]
58
+ return keywords
59
+
60
+ def to_json(self) -> str:
61
+ """Convert nlp artifacts to json."""
62
+
63
+ return_dict = self.__dict__.copy()
64
+
65
+ # Ignore NLP engine as it's not serializable currently
66
+ del return_dict["nlp_engine"]
67
+
68
+ # Converting spaCy tokens and spans to string as they are not serializable
69
+ if "tokens" in return_dict:
70
+ return_dict["tokens"] = [token.text for token in self.tokens]
71
+ if "entities" in return_dict:
72
+ return_dict["entities"] = [entity.text for entity in self.entities]
73
+
74
+ return json.dumps(return_dict)
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/nlp_engine.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import Iterable, Iterator, Tuple
3
+
4
+ from presidio_analyzer.nlp_engine import NlpArtifacts
5
+
6
+
7
+ class NlpEngine(ABC):
8
+ """
9
+ NlpEngine is an abstraction layer over the nlp module.
10
+
11
+ It provides NLP preprocessing functionality as well as other queries
12
+ on tokens.
13
+ """
14
+
15
+ @abstractmethod
16
+ def process_text(self, text: str, language: str) -> NlpArtifacts:
17
+ """Execute the NLP pipeline on the given text and language."""
18
+
19
+ @abstractmethod
20
+ def process_batch(
21
+ self, texts: Iterable[str], language: str, **kwargs
22
+ ) -> Iterator[Tuple[str, NlpArtifacts]]:
23
+ """Execute the NLP pipeline on a batch of texts.
24
+
25
+ Returns a tuple of (text, NlpArtifacts)
26
+ """
27
+
28
+ @abstractmethod
29
+ def is_stopword(self, word: str, language: str) -> bool:
30
+ """
31
+ Return true if the given word is a stop word.
32
+
33
+ (within the given language)
34
+ """
35
+
36
+ @abstractmethod
37
+ def is_punct(self, word: str, language: str) -> bool:
38
+ """
39
+ Return true if the given word is a punctuation word.
40
+
41
+ (within the given language)
42
+ """
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/spacy_nlp_engine.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Optional, Dict, Iterator, Tuple, Union, List
3
+
4
+ import spacy
5
+ from spacy.language import Language
6
+ from spacy.tokens import Doc
7
+
8
+ from presidio_analyzer.nlp_engine import NlpArtifacts, NlpEngine
9
+
10
+ logger = logging.getLogger("presidio_analyzer")
11
+
12
+
13
+ class SpacyNlpEngine(NlpEngine):
14
+ """
15
+ SpacyNlpEngine is an abstraction layer over the nlp module.
16
+
17
+ It provides processing functionality as well as other queries
18
+ on tokens.
19
+ The SpacyNlpEngine uses SpaCy as its NLP module
20
+ """
21
+
22
+ engine_name = "spacy"
23
+ is_available = bool(spacy)
24
+
25
+
26
+ def __init__(self, models: Optional[Dict[str, str]] = None):
27
+ """
28
+ Initialize a wrapper on spaCy functionality.
29
+
30
+ :param models: Dictionary with the name of the spaCy model per language.
31
+ For example: models = {"en": "en_core_web_lg"}
32
+ """
33
+ if not models:
34
+ models = {"en": "en_core_web_lg"}
35
+ logger.debug(f"Loading SpaCy models: {models.values()}")
36
+
37
+ self.nlp = {
38
+ lang_code: spacy.load(model_name, disable=["parser"])
39
+ for lang_code, model_name in models.items()
40
+ }
41
+
42
+ def process_text(self, text: str, language: str) -> NlpArtifacts:
43
+ """Execute the SpaCy NLP pipeline on the given text and language."""
44
+
45
+ doc = self.nlp[language](text)
46
+ return self._doc_to_nlp_artifact(doc, language)
47
+
48
+ def process_batch(
49
+ self,
50
+ texts: Union[List[str], List[Tuple[str, object]]],
51
+ language: str,
52
+ as_tuples: bool = False,
53
+ ) -> Iterator[Optional[NlpArtifacts]]:
54
+ """Execute the NLP pipeline on a batch of texts using spacy pipe."""
55
+ texts = (str(text) for text in texts)
56
+ docs = self.nlp[language].pipe(texts, as_tuples=as_tuples)
57
+ for doc in docs:
58
+ yield doc.text, self._doc_to_nlp_artifact(doc, language)
59
+
60
+ def is_stopword(self, word: str, language: str) -> bool:
61
+ """
62
+ Return true if the given word is a stop word.
63
+
64
+ (within the given language)
65
+ """
66
+ return self.nlp[language].vocab[word].is_stop
67
+
68
+ def is_punct(self, word: str, language: str) -> bool:
69
+ """
70
+ Return true if the given word is a punctuation word.
71
+
72
+ (within the given language).
73
+ """
74
+ return self.nlp[language].vocab[word].is_punct
75
+
76
+ def get_nlp(self, language: str) -> Language:
77
+ """
78
+ Return the language model loaded for a language.
79
+
80
+ :param language: Name of language
81
+ :return: Language model from spaCy
82
+ """
83
+ return self.nlp[language]
84
+
85
+ def _doc_to_nlp_artifact(self, doc: Doc, language: str) -> NlpArtifacts:
86
+ lemmas = [token.lemma_ for token in doc]
87
+ tokens_indices = [token.idx for token in doc]
88
+ entities = doc.ents
89
+ return NlpArtifacts(
90
+ entities=entities,
91
+ tokens=doc,
92
+ tokens_indices=tokens_indices,
93
+ lemmas=lemmas,
94
+ nlp_engine=self,
95
+ language=language,
96
+ )
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/nlp_engine/stanza_nlp_engine.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ try:
4
+ import stanza
5
+ import spacy_stanza
6
+ except ImportError:
7
+ stanza = None
8
+
9
+ from presidio_analyzer.nlp_engine import SpacyNlpEngine
10
+
11
+ logger = logging.getLogger("presidio_analyzer")
12
+
13
+
14
+ class StanzaNlpEngine(SpacyNlpEngine):
15
+ """
16
+ StanzaNlpEngine is an abstraction layer over the nlp module.
17
+
18
+ It provides processing functionality as well as other queries
19
+ on tokens.
20
+ The StanzaNlpEngine uses spacy-stanza and stanza as its NLP module
21
+
22
+ :param models: Dictionary with the name of the stanza model per language.
23
+ For example: models = {"en": "en"}
24
+ """
25
+
26
+ engine_name = "stanza"
27
+ is_available = bool(stanza)
28
+ def __init__(self, models=None): # noqa ANN201
29
+ if not models:
30
+ models = {"en": "en"}
31
+ logger.debug(f"Loading Stanza models: {models.values()}")
32
+
33
+ self.nlp = {
34
+ lang_code: spacy_stanza.load_pipeline(
35
+ model_name,
36
+ processors="tokenize,pos,lemma,ner",
37
+ )
38
+ for lang_code, model_name in models.items()
39
+ }
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/pattern.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import Dict
3
+
4
+
5
+ class Pattern:
6
+ """
7
+ A class that represents a regex pattern.
8
+
9
+ :param name: the name of the pattern
10
+ :param regex: the regex pattern to detect
11
+ :param score: the pattern's strength (values varies 0-1)
12
+ """
13
+
14
+ def __init__(self, name: str, regex: str, score: float):
15
+
16
+ self.name = name
17
+ self.regex = regex
18
+ self.score = score
19
+
20
+ def to_dict(self) -> Dict:
21
+ """
22
+ Turn this instance into a dictionary.
23
+
24
+ :return: a dictionary
25
+ """
26
+ return_dict = {"name": self.name, "score": self.score, "regex": self.regex}
27
+ return return_dict
28
+
29
+ @classmethod
30
+ def from_dict(cls, pattern_dict: Dict) -> "Pattern":
31
+ """
32
+ Load an instance from a dictionary.
33
+
34
+ :param pattern_dict: a dictionary holding the pattern's parameters
35
+ :return: a Pattern instance
36
+ """
37
+ return cls(**pattern_dict)
38
+
39
+ def __repr__(self):
40
+ """Return string representation of instance."""
41
+ return json.dumps(self.to_dict())
42
+
43
+ def __str__(self):
44
+ """Return string representation of instance."""
45
+ return json.dumps(self.to_dict())
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/pattern_recognizer.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import logging
3
+ from typing import List, Optional, Dict
4
+
5
+ import regex as re
6
+
7
+ from presidio_analyzer import (
8
+ LocalRecognizer,
9
+ Pattern,
10
+ RecognizerResult,
11
+ EntityRecognizer,
12
+ AnalysisExplanation,
13
+ )
14
+ from presidio_analyzer.nlp_engine import NlpArtifacts
15
+
16
+ logger = logging.getLogger("presidio_analyzer")
17
+
18
+
19
+ class PatternRecognizer(LocalRecognizer):
20
+ """
21
+ PII entity recognizer using regular expressions or deny-lists.
22
+
23
+ :param patterns: A list of patterns to detect
24
+ :param deny_list: A list of words to detect,
25
+ in case our recognizer uses a predefined list of words (deny list)
26
+ :param context: list of context words
27
+ :param deny_list_score: confidence score for a term
28
+ identified using a deny-list
29
+ """
30
+
31
+ def __init__(
32
+ self,
33
+ supported_entity: str,
34
+ name: str = None,
35
+ supported_language: str = "en",
36
+ patterns: List[Pattern] = None,
37
+ deny_list: List[str] = None,
38
+ context: List[str] = None,
39
+ deny_list_score: float = 1.0,
40
+ version: str = "0.0.1",
41
+ ):
42
+
43
+ if not supported_entity:
44
+ raise ValueError("Pattern recognizer should be initialized with entity")
45
+
46
+ if not patterns and not deny_list:
47
+ raise ValueError(
48
+ "Pattern recognizer should be initialized with patterns"
49
+ " or with deny list"
50
+ )
51
+
52
+ super().__init__(
53
+ supported_entities=[supported_entity],
54
+ supported_language=supported_language,
55
+ name=name,
56
+ version=version,
57
+ )
58
+ if patterns is None:
59
+ self.patterns = []
60
+ else:
61
+ self.patterns = patterns
62
+ self.context = context
63
+ self.deny_list_score = deny_list_score
64
+
65
+ if deny_list:
66
+ deny_list_pattern = self._deny_list_to_regex(deny_list)
67
+ self.patterns.append(deny_list_pattern)
68
+ self.deny_list = deny_list
69
+ else:
70
+ self.deny_list = []
71
+
72
+ def load(self): # noqa D102
73
+ pass
74
+
75
+ def analyze(
76
+ self,
77
+ text: str,
78
+ entities: List[str],
79
+ nlp_artifacts: NlpArtifacts = None,
80
+ regex_flags: int = None,
81
+ ) -> List[RecognizerResult]:
82
+ """
83
+ Analyzes text to detect PII using regular expressions or deny-lists.
84
+
85
+ :param text: Text to be analyzed
86
+ :param entities: Entities this recognizer can detect
87
+ :param nlp_artifacts: Output values from the NLP engine
88
+ :param regex_flags:
89
+ :return:
90
+ """
91
+ results = []
92
+
93
+ if self.patterns:
94
+ pattern_result = self.__analyze_patterns(text, regex_flags)
95
+ results.extend(pattern_result)
96
+
97
+ return results
98
+
99
+ def _deny_list_to_regex(self, deny_list: List[str]) -> Pattern:
100
+ """
101
+ Convert a list of words to a matching regex.
102
+
103
+ To be analyzed by the analyze method as any other regex patterns.
104
+
105
+ :param deny_list: the list of words to detect
106
+ :return:the regex of the words for detection
107
+ """
108
+
109
+ # Escape deny list elements as preparation for regex
110
+ escaped_deny_list = [re.escape(element) for element in deny_list]
111
+ regex = r"(?:^|(?<=\W))(" + "|".join(escaped_deny_list) + r")(?:(?=\W)|$)"
112
+ return Pattern(name="deny_list", regex=regex, score=self.deny_list_score)
113
+
114
+ def validate_result(self, pattern_text: str) -> Optional[bool]:
115
+ """
116
+ Validate the pattern logic e.g., by running checksum on a detected pattern.
117
+
118
+ :param pattern_text: the text to validated.
119
+ Only the part in text that was detected by the regex engine
120
+ :return: A bool indicating whether the validation was successful.
121
+ """
122
+ return None
123
+
124
+ def invalidate_result(self, pattern_text: str) -> Optional[bool]:
125
+ """
126
+ Logic to check for result invalidation by running pruning logic.
127
+
128
+ For example, each SSN number group should not consist of all the same digits.
129
+
130
+ :param pattern_text: the text to validated.
131
+ Only the part in text that was detected by the regex engine
132
+ :return: A bool indicating whether the result is invalidated
133
+ """
134
+ return None
135
+
136
+ @staticmethod
137
+ def build_regex_explanation(
138
+ recognizer_name: str,
139
+ pattern_name: str,
140
+ pattern: str,
141
+ original_score: float,
142
+ validation_result: bool,
143
+ ) -> AnalysisExplanation:
144
+ """
145
+ Construct an explanation for why this entity was detected.
146
+
147
+ :param recognizer_name: Name of recognizer detecting the entity
148
+ :param pattern_name: Regex pattern name which detected the entity
149
+ :param pattern: Regex pattern logic
150
+ :param original_score: Score given by the recognizer
151
+ :param validation_result: Whether validation was used and its result
152
+ :return: Analysis explanation
153
+ """
154
+ explanation = AnalysisExplanation(
155
+ recognizer=recognizer_name,
156
+ original_score=original_score,
157
+ pattern_name=pattern_name,
158
+ pattern=pattern,
159
+ validation_result=validation_result,
160
+ )
161
+ return explanation
162
+
163
+ def __analyze_patterns(
164
+ self, text: str, flags: int = None
165
+ ) -> List[RecognizerResult]:
166
+ """
167
+ Evaluate all patterns in the provided text.
168
+
169
+ Including words in the provided deny-list
170
+
171
+ :param text: text to analyze
172
+ :param flags: regex flags
173
+ :return: A list of RecognizerResult
174
+ """
175
+ flags = flags if flags else re.DOTALL | re.MULTILINE
176
+ results = []
177
+ for pattern in self.patterns:
178
+ match_start_time = datetime.datetime.now()
179
+ matches = re.finditer(pattern.regex, text, flags=flags)
180
+ match_time = datetime.datetime.now() - match_start_time
181
+ logger.debug(
182
+ "--- match_time[%s]: %s.%s seconds",
183
+ pattern.name,
184
+ match_time.seconds,
185
+ match_time.microseconds,
186
+ )
187
+
188
+ for match in matches:
189
+ start, end = match.span()
190
+ current_match = text[start:end]
191
+
192
+ # Skip empty results
193
+ if current_match == "":
194
+ continue
195
+
196
+ score = pattern.score
197
+
198
+ validation_result = self.validate_result(current_match)
199
+ description = self.build_regex_explanation(
200
+ self.name, pattern.name, pattern.regex, score, validation_result
201
+ )
202
+ pattern_result = RecognizerResult(
203
+ entity_type=self.supported_entities[0],
204
+ start=start,
205
+ end=end,
206
+ score=score,
207
+ analysis_explanation=description,
208
+ recognition_metadata={
209
+ RecognizerResult.RECOGNIZER_NAME_KEY: self.name,
210
+ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY: self.id,
211
+ },
212
+ )
213
+
214
+ if validation_result is not None:
215
+ if validation_result:
216
+ pattern_result.score = EntityRecognizer.MAX_SCORE
217
+ else:
218
+ pattern_result.score = EntityRecognizer.MIN_SCORE
219
+
220
+ invalidation_result = self.invalidate_result(current_match)
221
+ if invalidation_result is not None and invalidation_result:
222
+ pattern_result.score = EntityRecognizer.MIN_SCORE
223
+
224
+ if pattern_result.score > EntityRecognizer.MIN_SCORE:
225
+ results.append(pattern_result)
226
+
227
+ # Update analysis explanation score following validation or invalidation
228
+ description.score = pattern_result.score
229
+
230
+ results = EntityRecognizer.remove_duplicates(results)
231
+ return results
232
+
233
+ def to_dict(self) -> Dict:
234
+ """Serialize instance into a dictionary."""
235
+ return_dict = super().to_dict()
236
+
237
+ return_dict["patterns"] = [pat.to_dict() for pat in self.patterns]
238
+ return_dict["deny_list"] = self.deny_list
239
+ return_dict["context"] = self.context
240
+ return_dict["supported_entity"] = return_dict["supported_entities"][0]
241
+ del return_dict["supported_entities"]
242
+
243
+ return return_dict
244
+
245
+ @classmethod
246
+ def from_dict(cls, entity_recognizer_dict: Dict) -> "PatternRecognizer":
247
+ """Create instance from a serialized dict."""
248
+ patterns = entity_recognizer_dict.get("patterns")
249
+ if patterns:
250
+ patterns_list = [Pattern.from_dict(pat) for pat in patterns]
251
+ entity_recognizer_dict["patterns"] = patterns_list
252
+
253
+ return cls(**entity_recognizer_dict)
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/recognizer_registry/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ """Recognizer registry init."""
2
+ from .recognizer_registry import RecognizerRegistry
3
+
4
+ __all__ = ["RecognizerRegistry"]
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/recognizer_result.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Dict
3
+
4
+ from presidio_analyzer import AnalysisExplanation
5
+
6
+
7
+ class RecognizerResult:
8
+ """
9
+ Recognizer Result represents the findings of the detected entity.
10
+
11
+ Result of a recognizer analyzing the text.
12
+
13
+ :param entity_type: the type of the entity
14
+ :param start: the start location of the detected entity
15
+ :param end: the end location of the detected entity
16
+ :param score: the score of the detection
17
+ :param analysis_explanation: contains the explanation of why this
18
+ entity was identified
19
+ :param recognition_metadata: a dictionary of metadata to be used in
20
+ recognizer specific cases, for example specific recognized context words
21
+ and recognizer name
22
+ """
23
+
24
+ # Keys for recognizer metadata
25
+ RECOGNIZER_NAME_KEY = "recognizer_name"
26
+ RECOGNIZER_IDENTIFIER_KEY = "recognizer_identifier"
27
+
28
+ # Key of a flag inside recognition_metadata dictionary
29
+ # which is set to true if the result enhanced by context
30
+ IS_SCORE_ENHANCED_BY_CONTEXT_KEY = "is_score_enhanced_by_context"
31
+
32
+ logger = logging.getLogger("presidio_analyzer")
33
+
34
+ def __init__(
35
+ self,
36
+ entity_type: str,
37
+ start: int,
38
+ end: int,
39
+ score: float,
40
+ analysis_explanation: AnalysisExplanation = None,
41
+ recognition_metadata: Dict = None,
42
+ ):
43
+
44
+ self.entity_type = entity_type
45
+ self.start = start
46
+ self.end = end
47
+ self.score = score
48
+ self.analysis_explanation = analysis_explanation
49
+
50
+ if not recognition_metadata:
51
+ self.logger.debug(
52
+ "recognition_metadata should be passed, "
53
+ "containing a recognizer_name value"
54
+ )
55
+
56
+ self.recognition_metadata = recognition_metadata
57
+
58
+ def append_analysis_explanation_text(self, text: str) -> None:
59
+ """Add text to the analysis explanation."""
60
+ if self.analysis_explanation:
61
+ self.analysis_explanation.append_textual_explanation_line(text)
62
+
63
+ def to_dict(self) -> Dict:
64
+ """
65
+ Serialize self to dictionary.
66
+
67
+ :return: a dictionary
68
+ """
69
+ return self.__dict__
70
+
71
+ @classmethod
72
+ def from_json(cls, data: Dict) -> "RecognizerResult":
73
+ """
74
+ Create RecognizerResult from json.
75
+
76
+ :param data: e.g. {
77
+ "start": 24,
78
+ "end": 32,
79
+ "score": 0.8,
80
+ "entity_type": "NAME"
81
+ }
82
+ :return: RecognizerResult
83
+ """
84
+ score = data.get("score")
85
+ entity_type = data.get("entity_type")
86
+ start = data.get("start")
87
+ end = data.get("end")
88
+ return cls(entity_type, start, end, score)
89
+
90
+ def __repr__(self) -> str:
91
+ """Return a string representation of the instance."""
92
+ return self.__str__()
93
+
94
+ def intersects(self, other: "RecognizerResult") -> int:
95
+ """
96
+ Check if self intersects with a different RecognizerResult.
97
+
98
+ :return: If intersecting, returns the number of
99
+ intersecting characters.
100
+ If not, returns 0
101
+ """
102
+ # if they do not overlap the intersection is 0
103
+ if self.end < other.start or other.end < self.start:
104
+ return 0
105
+
106
+ # otherwise the intersection is min(end) - max(start)
107
+ return min(self.end, other.end) - max(self.start, other.start)
108
+
109
+ def contained_in(self, other: "RecognizerResult") -> bool:
110
+ """
111
+ Check if self is contained in a different RecognizerResult.
112
+
113
+ :return: true if contained
114
+ """
115
+ return self.start >= other.start and self.end <= other.end
116
+
117
+ def contains(self, other: "RecognizerResult") -> bool:
118
+ """
119
+ Check if one result is contained or equal to another result.
120
+
121
+ :param other: another RecognizerResult
122
+ :return: bool
123
+ """
124
+ return self.start <= other.start and self.end >= other.end
125
+
126
+ def equal_indices(self, other: "RecognizerResult") -> bool:
127
+ """
128
+ Check if the indices are equal between two results.
129
+
130
+ :param other: another RecognizerResult
131
+ :return:
132
+ """
133
+ return self.start == other.start and self.end == other.end
134
+
135
+ def __gt__(self, other: "RecognizerResult") -> bool:
136
+ """
137
+ Check if one result is greater by using the results indices in the text.
138
+
139
+ :param other: another RecognizerResult
140
+ :return: bool
141
+ """
142
+ if self.start == other.start:
143
+ return self.end > other.end
144
+ return self.start > other.start
145
+
146
+ def __eq__(self, other: "RecognizerResult") -> bool:
147
+ """
148
+ Check two results are equal by using all class fields.
149
+
150
+ :param other: another RecognizerResult
151
+ :return: bool
152
+ """
153
+ equal_type = self.entity_type == other.entity_type
154
+ equal_score = self.score == other.score
155
+ return self.equal_indices(other) and equal_type and equal_score
156
+
157
+ def __hash__(self):
158
+ """
159
+ Hash the result data by using all class fields.
160
+
161
+ :return: int
162
+ """
163
+ return hash(
164
+ f"{str(self.start)} {str(self.end)} {str(self.score)} {self.entity_type}"
165
+ )
166
+
167
+ def __str__(self) -> str:
168
+ """Return a string representation of the instance."""
169
+ return (
170
+ f"type: {self.entity_type}, "
171
+ f"start: {self.start}, "
172
+ f"end: {self.end}, "
173
+ f"score: {self.score}"
174
+ )
175
+
176
+ def has_conflict(self, other: "RecognizerResult") -> bool:
177
+ """
178
+ Check if two recognizer results are conflicted or not.
179
+
180
+ I have a conflict if:
181
+ 1. My indices are the same as the other and my score is lower.
182
+ 2. If my indices are contained in another.
183
+
184
+ :param other: RecognizerResult
185
+ :return:
186
+ """
187
+ if self.equal_indices(other):
188
+ return self.score <= other.score
189
+ return other.contains(self)
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/presidio_analyzer/presidio_analyzer/remote_recognizer.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import List, Optional
3
+
4
+ from presidio_analyzer import EntityRecognizer
5
+ from presidio_analyzer.nlp_engine import NlpArtifacts
6
+
7
+
8
+ class RemoteRecognizer(ABC, EntityRecognizer):
9
+ """
10
+ A configuration for a recognizer that runs on a different process / remote machine.
11
+
12
+ :param supported_entities: A list of entities this recognizer can identify
13
+ :param name: name of recognizer
14
+ :param supported_language: The language this recognizer can detect entities in
15
+ :param version: Version of this recognizer
16
+ """
17
+
18
+ def __init__(
19
+ self,
20
+ supported_entities: List[str],
21
+ name: Optional[str],
22
+ supported_language: str,
23
+ version: str,
24
+ context: Optional[List[str]] = None,
25
+ ):
26
+ super().__init__(
27
+ supported_entities=supported_entities,
28
+ name=name,
29
+ supported_language=supported_language,
30
+ version=version,
31
+ context=context,
32
+ )
33
+
34
+ @abstractmethod
35
+ def load(self): # noqa D102
36
+ pass
37
+
38
+ @abstractmethod
39
+ def analyze(
40
+ self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts
41
+ ): # noqa ANN201
42
+ """
43
+ Call an external service for PII detection.
44
+
45
+ :param text: text to be analyzed
46
+ :param entities: Entities that should be looked for
47
+ :param nlp_artifacts: Additional metadata from the NLP engine
48
+ :return: List of identified PII entities
49
+ """
50
+
51
+ # 1. Call the external service.
52
+ # 2. Translate results into List[RecognizerResult]
53
+ pass
54
+
55
+ @abstractmethod
56
+ def get_supported_entities(self) -> List[str]: # noqa D102
57
+ pass
presidio_analyzer/presidio_analyzer/Infosys_presidio_analyzer/setup.py ADDED
@@ -0,0 +1 @@
 
0
  name='presidio_analyzer',
1
  version='4.1.0',
2
  author='Amit Hegde',
3
  author_email='amitumamaheshwar.h@infosys.com',
4
  description='Infosys Intelligent Assistant',
5
  long_description='Infosys Intelligent Assistant',
6
  classifiers=['Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent'],
7
  package_dir={'': 'presidio_analyzer'},
8
  packages=setuptools.find_packages(where='presidio_analyzer'),
9
  python_requires='>=3.6',
10
  )
 
1
+ import setuptools
2
  name='presidio_analyzer',
3
  version='4.1.0',
4
  author='Amit Hegde',
5
  author_email='amitumamaheshwar.h@infosys.com',
6
  description='Infosys Intelligent Assistant',
7
  long_description='Infosys Intelligent Assistant',
8
  classifiers=['Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent'],
9
  package_dir={'': 'presidio_analyzer'},
10
  packages=setuptools.find_packages(where='presidio_analyzer'),
11
  python_requires='>=3.6',
12
  )
presidio_analyzer/presidio_analyzer/Package_to_wheel.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ 1.Make necessary changes in build_config file Like Package name and version
2
+
3
+ 2.pip install pyc_wheel build
4
+
5
+ 3.python create_wheel_file.py --> Creates Wheel file