KingZack's picture
chaning provider to from fire to hf
968f9c1
import streamlit as st
from huggingface_hub import InferenceClient
# MUST SET HF_TOKEN IN STREAMLIT SETTINGS IN HUGGINGFACE REPO SECRETS
HF_TOKEN = st.secrets["HF_TOKEN"]
# INIT THE INFERENCE CLIENT WITH YOUR HF TOKEN
client = InferenceClient(
provider="hf-inference",
api_key=HF_TOKEN,
)
# THIS IS JUST THE streamlit TEXT INPUT WIDGET
user_input = st.text_input(
"Place your prompt here",
"This is a placeholder",
key="placeholder",
)
# THIS IS THE INFERENCE CLIENT CALL
completion = client.chat.completions.create(
model="HuggingFaceH4/zephyr-7b-beta",
messages=[
{
"role": "user",
"content": user_input
}
],
max_tokens=512,
)
# THIS IS THE RESPONSE FROM THE INFERENCE CLIENT
ai_response = completion.choices[0].message.content
# THIS IS THE STREAMLIT TEXT OUTPUT WIDGET WITH THE RESPONSE FROM THE INFERENCE CLIENT
st.text(ai_response)
### WRONG WAY TO TRY AND LOAD MODELS:::
# Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Prover-V2-671B", trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Prover-V2-671B", trust_remote_code=True)