Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -22,171 +22,9 @@ theme = gr.themes.Soft(
|
|
22 |
color_accent_soft_dark="transparent"
|
23 |
)
|
24 |
|
25 |
-
import edge_tts
|
26 |
-
import asyncio
|
27 |
-
import tempfile
|
28 |
-
import numpy as np
|
29 |
-
import soxr
|
30 |
-
from pydub import AudioSegment
|
31 |
-
import torch
|
32 |
-
import sentencepiece as spm
|
33 |
-
import onnxruntime as ort
|
34 |
-
from huggingface_hub import hf_hub_download, InferenceClient
|
35 |
-
import requests
|
36 |
-
from bs4 import BeautifulSoup
|
37 |
-
import urllib
|
38 |
-
import random
|
39 |
-
|
40 |
-
# List of user agents to choose from for requests
|
41 |
-
_useragent_list = [
|
42 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
|
43 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
44 |
-
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
45 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
|
46 |
-
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
47 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
|
48 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
|
49 |
-
]
|
50 |
-
|
51 |
-
def get_useragent():
|
52 |
-
"""Returns a random user agent from the list."""
|
53 |
-
return random.choice(_useragent_list)
|
54 |
-
|
55 |
-
def extract_text_from_webpage(html_content):
|
56 |
-
"""Extracts visible text from HTML content using BeautifulSoup."""
|
57 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
58 |
-
# Remove unwanted tags
|
59 |
-
for tag in soup(["script", "style", "header", "footer", "nav"]):
|
60 |
-
tag.extract()
|
61 |
-
# Get the remaining visible text
|
62 |
-
visible_text = soup.get_text(strip=True)
|
63 |
-
return visible_text
|
64 |
-
|
65 |
-
def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
|
66 |
-
"""Performs a Google search and returns the results."""
|
67 |
-
escaped_term = urllib.parse.quote_plus(term)
|
68 |
-
start = 0
|
69 |
-
all_results = []
|
70 |
-
|
71 |
-
# Fetch results in batches
|
72 |
-
while start < num_results:
|
73 |
-
resp = requests.get(
|
74 |
-
url="https://www.google.com/search",
|
75 |
-
headers={"User-Agent": get_useragent()}, # Set random user agent
|
76 |
-
params={
|
77 |
-
"q": term,
|
78 |
-
"num": num_results - start, # Number of results to fetch in this batch
|
79 |
-
"hl": lang,
|
80 |
-
"start": start,
|
81 |
-
"safe": safe,
|
82 |
-
},
|
83 |
-
timeout=timeout,
|
84 |
-
verify=ssl_verify,
|
85 |
-
)
|
86 |
-
resp.raise_for_status() # Raise an exception if request fails
|
87 |
-
|
88 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
89 |
-
result_block = soup.find_all("div", attrs={"class": "g"})
|
90 |
-
|
91 |
-
# If no results, continue to the next batch
|
92 |
-
if not result_block:
|
93 |
-
start += 1
|
94 |
-
continue
|
95 |
-
|
96 |
-
# Extract link and text from each result
|
97 |
-
for result in result_block:
|
98 |
-
link = result.find("a", href=True)
|
99 |
-
if link:
|
100 |
-
link = link["href"]
|
101 |
-
try:
|
102 |
-
# Fetch webpage content
|
103 |
-
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
|
104 |
-
webpage.raise_for_status()
|
105 |
-
# Extract visible text from webpage
|
106 |
-
visible_text = extract_text_from_webpage(webpage.text)
|
107 |
-
all_results.append({"link": link, "text": visible_text})
|
108 |
-
except requests.exceptions.RequestException as e:
|
109 |
-
# Handle errors fetching or processing webpage
|
110 |
-
print(f"Error fetching or processing {link}: {e}")
|
111 |
-
all_results.append({"link": link, "text": None})
|
112 |
-
else:
|
113 |
-
all_results.append({"link": None, "text": None})
|
114 |
-
|
115 |
-
start += len(result_block) # Update starting index for next batch
|
116 |
-
|
117 |
-
return all_results
|
118 |
-
|
119 |
-
# Speech Recognition Model Configuration
|
120 |
-
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
121 |
-
sample_rate = 16000
|
122 |
-
|
123 |
-
# Download preprocessor, encoder and tokenizer
|
124 |
-
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
125 |
-
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
126 |
-
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
127 |
-
|
128 |
-
# Mistral Model Configuration
|
129 |
-
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
130 |
-
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
131 |
-
|
132 |
-
def resample(audio_fp32, sr):
|
133 |
-
return soxr.resample(audio_fp32, sr, sample_rate)
|
134 |
-
|
135 |
-
def to_float32(audio_buffer):
|
136 |
-
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
137 |
-
|
138 |
-
def transcribe(audio_path):
|
139 |
-
audio_file = AudioSegment.from_file(audio_path)
|
140 |
-
sr = audio_file.frame_rate
|
141 |
-
audio_buffer = np.array(audio_file.get_array_of_samples())
|
142 |
-
|
143 |
-
audio_fp32 = to_float32(audio_buffer)
|
144 |
-
audio_16k = resample(audio_fp32, sr)
|
145 |
-
|
146 |
-
input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
147 |
-
length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
148 |
-
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
149 |
-
|
150 |
-
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
151 |
-
|
152 |
-
blank_id = tokenizer.vocab_size()
|
153 |
-
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
154 |
-
text = tokenizer.decode_ids(decoded_prediction)
|
155 |
-
|
156 |
-
return text
|
157 |
-
|
158 |
-
def model(text, web_search):
|
159 |
-
if web_search is True:
|
160 |
-
"""Performs a web search, feeds the results to a language model, and returns the answer."""
|
161 |
-
web_results = search(text)
|
162 |
-
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
163 |
-
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
|
164 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
165 |
-
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
166 |
-
else:
|
167 |
-
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
168 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
169 |
-
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
170 |
-
|
171 |
-
async def respond(audio, web_search):
|
172 |
-
user = transcribe(audio)
|
173 |
-
reply = model(user, web_search)
|
174 |
-
communicate = edge_tts.Communicate(reply)
|
175 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
176 |
-
tmp_path = tmp_file.name
|
177 |
-
await communicate.save(tmp_path)
|
178 |
-
return tmp_path
|
179 |
|
180 |
with gr.Blocks() as voice:
|
181 |
gr.Markdown("## Temproraly Not Working (Update in Progress)")
|
182 |
-
with gr.Row():
|
183 |
-
web_search = gr.Checkbox(label="Web Search", value=False)
|
184 |
-
input = gr.Audio(label="User Input", sources="microphone", type="filepath")
|
185 |
-
output = gr.Audio(label="AI", autoplay=True)
|
186 |
-
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
187 |
-
|
188 |
-
|
189 |
-
# Create Gradio blocks for different functionalities
|
190 |
|
191 |
# Chat interface block
|
192 |
with gr.Blocks(
|
|
|
22 |
color_accent_soft_dark="transparent"
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
with gr.Blocks() as voice:
|
27 |
gr.Markdown("## Temproraly Not Working (Update in Progress)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Chat interface block
|
30 |
with gr.Blocks(
|