Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import edge_tts | |
import asyncio | |
import tempfile | |
import numpy as np | |
import soxr | |
from pydub import AudioSegment | |
import torch | |
import sentencepiece as spm | |
import onnxruntime as ort | |
from huggingface_hub import hf_hub_download, InferenceClient | |
# Speech Recognition Model Configuration | |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" | |
sample_rate = 16000 | |
# Download preprocessor, encoder and tokenizer | |
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) | |
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) | |
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) | |
# Mistral Model Configuration | |
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" | |
def resample(audio_fp32, sr): | |
return soxr.resample(audio_fp32, sr, sample_rate) | |
def to_float32(audio_buffer): | |
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) | |
def transcribe(audio_path): | |
audio_file = AudioSegment.from_file(audio_path) | |
sr = audio_file.frame_rate | |
audio_buffer = np.array(audio_file.get_array_of_samples()) | |
audio_fp32 = to_float32(audio_buffer) | |
audio_16k = resample(audio_fp32, sr) | |
input_signal = torch.tensor(audio_16k).unsqueeze(0) | |
length = torch.tensor(len(audio_16k)).unsqueeze(0) | |
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) | |
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] | |
blank_id = tokenizer.vocab_size() | |
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] | |
text = tokenizer.decode_ids(decoded_prediction) | |
return text | |
def model(text): | |
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" | |
stream = client1.text_generation(formatted_prompt, max_new_tokens=300) | |
return stream[:-4] | |
async def respond(audio): | |
user = transcribe(audio) | |
reply = model(user) | |
communicate = edge_tts.Communicate(reply) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path |