KingNish commited on
Commit
983867e
·
verified ·
1 Parent(s): 75b9121

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -104
app.py CHANGED
@@ -21,25 +21,27 @@ model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usag
21
  model.to("cpu")
22
 
23
 
24
- def sample_frames(video_file) :
25
- try:
26
- video = cv2.VideoCapture(video_file)
27
- total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
28
- num_frames = 6
29
- interval = total_frames // num_frames
30
- frames = []
31
- for i in range(total_frames):
32
- ret, frame = video.read()
33
- pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
34
- if not ret:
35
- continue
36
- if i % interval == 0:
37
- frames.append(pil_img)
38
- video.release()
39
- return frames
40
- except:
41
- frames=[]
42
- return frames
 
 
43
 
44
  def extract_text_from_webpage(html_content):
45
  soup = BeautifulSoup(html_content, 'html.parser')
@@ -93,20 +95,9 @@ def respond(message, history):
93
  image = user_prompt["files"][0]
94
  txt = user_prompt["text"]
95
 
96
- video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
97
- image_extensions = Image.registered_extensions()
98
- image_extensions = tuple([ex for ex, f in image_extensions.items()])
99
-
100
- if image.endswith(video_extensions):
101
- gr.Info(f"Analyzing {video_extensions} file")
102
- image = sample_frames(image)
103
- image_tokens = "<image>" * int(len(image))
104
- prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
105
-
106
- elif image.endswith(image_extensions):
107
- gr.Info("Analyzing image")
108
- image = Image.open(image).convert("RGB")
109
- prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
110
 
111
  inputs = processor(prompt, image, return_tensors="pt")
112
  streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
@@ -119,64 +110,74 @@ def respond(message, history):
119
  buffer = ""
120
  for new_text in streamer:
121
  buffer += new_text
122
- yield buffer
123
-
124
-
125
- # Define function metadata for user interface
126
- functions_metadata = [
127
- {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
128
- {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
129
- {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
130
- {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
131
- ]
132
-
133
- message_text = message["text"]
134
- func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
135
-
136
- response = client_gemma.chat_completion(func_caller, max_tokens=150)
137
- response = str(response)
138
- try:
139
- response = response[int(response.find("{")):int(response.index("</"))]
140
- except:
141
- print("A error occured")
142
- response = response.replace("\\n", "")
143
- response = response.replace("\\'", "'")
144
- response = response.replace('\\"', '"')
145
- print(f"\n{response}")
146
-
147
- func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
148
-
149
- try:
150
- json_data = json.loads(str(response))
151
- if json_data["name"] == "web_search":
152
- query = json_data["arguments"]["query"]
153
- gr.Info("Searching Web")
154
- web_results = search(query)
155
- gr.Info("Extracting relevant Info")
156
- web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
157
- messages = f"<|im_start|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
158
- for msg in history:
159
- messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
160
- messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
161
- messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
162
- stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
163
- output = ""
164
- for response in stream:
165
- if not response.token.text == "<|im_end|>":
166
- output += response.token.text
167
- yield output
168
- elif json_data["name"] == "image_generation":
169
- query = json_data["arguments"]["query"]
170
- gr.Info("Generating Image, Please wait...")
171
- seed = random.randint(1, 99999)
172
- query = query.replace(" ", "%20")
173
- image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
174
- yield image
175
- time.sleep(5)
176
- gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
177
- elif json_data["name"] == "image_qna":
178
- messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"
179
- else:
 
 
 
 
 
 
 
 
 
 
180
  messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
181
  for msg in history:
182
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
@@ -188,18 +189,6 @@ def respond(message, history):
188
  if not response.token.text == "<|eot_id|>":
189
  output += response.token.text
190
  yield output
191
- except:
192
- messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
193
- for msg in history:
194
- messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
195
- messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
196
- messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
197
- stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
198
- output = ""
199
- for response in stream:
200
- if not response.token.text == "<|eot_id|>":
201
- output += response.token.text
202
- yield output
203
 
204
  # Create the Gradio interface
205
  demo = gr.ChatInterface(
@@ -214,7 +203,8 @@ demo = gr.ChatInterface(
214
  {"text": "What's the current price of Bitcoin",},
215
  {"text": "Create A Beautiful image of Effiel Tower at Night",},
216
  {"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
217
- {"text": "What's the colour of both of Car in given image", "files": ["./car1.png", "./car2.png"]},
 
218
  ],
219
  cache_examples=False,
220
  )
 
21
  model.to("cpu")
22
 
23
 
24
+ def llava(message):
25
+ if message["files"]:
26
+ image = user_prompt["files"][0]
27
+ txt = user_prompt["text"]
28
+
29
+ gr.Info("Analyzing image")
30
+ image = Image.open(image).convert("RGB")
31
+ prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
32
+
33
+ inputs = processor(prompt, image, return_tensors="pt")
34
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
35
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
36
+ generated_text = ""
37
+
38
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
39
+ thread.start()
40
+
41
+ buffer = ""
42
+ for new_text in streamer:
43
+ buffer += new_text
44
+ yield buffer
45
 
46
  def extract_text_from_webpage(html_content):
47
  soup = BeautifulSoup(html_content, 'html.parser')
 
95
  image = user_prompt["files"][0]
96
  txt = user_prompt["text"]
97
 
98
+ gr.Info("Analyzing image")
99
+ image = Image.open(image).convert("RGB")
100
+ prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  inputs = processor(prompt, image, return_tensors="pt")
103
  streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
 
110
  buffer = ""
111
  for new_text in streamer:
112
  buffer += new_text
113
+ yield buffer
114
+ else:
115
+ functions_metadata = [
116
+ {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
117
+ {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
118
+ {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
119
+ {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
120
+ ]
121
+
122
+ message_text = message["text"]
123
+ func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text} {vqa}'})
124
+
125
+ response = client_gemma.chat_completion(func_caller, max_tokens=150)
126
+ response = str(response)
127
+ try:
128
+ response = response[int(response.find("{")):int(response.index("</"))]
129
+ except:
130
+ print("A error occured")
131
+ response = response.replace("\\n", "")
132
+ response = response.replace("\\'", "'")
133
+ response = response.replace('\\"', '"')
134
+ print(f"\n{response}")
135
+
136
+ func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
137
+
138
+ try:
139
+ json_data = json.loads(str(response))
140
+ if json_data["name"] == "web_search":
141
+ query = json_data["arguments"]["query"]
142
+ gr.Info("Searching Web")
143
+ web_results = search(query)
144
+ gr.Info("Extracting relevant Info")
145
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
146
+ messages = f"<|im_start|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
147
+ for msg in history:
148
+ messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
149
+ messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
150
+ messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
151
+ stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
152
+ output = ""
153
+ for response in stream:
154
+ if not response.token.text == "<|im_end|>":
155
+ output += response.token.text
156
+ yield output
157
+ elif json_data["name"] == "image_generation":
158
+ query = json_data["arguments"]["query"]
159
+ gr.Info("Generating Image, Please wait...")
160
+ seed = random.randint(1, 99999)
161
+ query = query.replace(" ", "%20")
162
+ image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
163
+ yield image
164
+ time.sleep(5)
165
+ gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
166
+ elif json_data["name"] == "image_qna":
167
+ messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"
168
+ else:
169
+ messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
170
+ for msg in history:
171
+ messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
172
+ messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
173
+ messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
174
+ stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
175
+ output = ""
176
+ for response in stream:
177
+ if not response.token.text == "<|eot_id|>":
178
+ output += response.token.text
179
+ yield output
180
+ except:
181
  messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
182
  for msg in history:
183
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
 
189
  if not response.token.text == "<|eot_id|>":
190
  output += response.token.text
191
  yield output
 
 
 
 
 
 
 
 
 
 
 
 
192
 
193
  # Create the Gradio interface
194
  demo = gr.ChatInterface(
 
203
  {"text": "What's the current price of Bitcoin",},
204
  {"text": "Create A Beautiful image of Effiel Tower at Night",},
205
  {"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
206
+ {"text": "What's the colour of car in given image", "files": ["./car1.png"]},
207
+ {"text": "Read what's written on paper", "files": ["./paper_with_text.png"]},
208
  ],
209
  cache_examples=False,
210
  )