Spaces:
Running
Running
import streamlit as st | |
import edge_tts | |
import asyncio | |
import tempfile | |
import os | |
from huggingface_hub import InferenceClient | |
import re | |
from streaming_stt_nemo import Model | |
import torch | |
import random | |
default_lang = "en" | |
engines = {default_lang: Model(default_lang)} | |
def transcribe(audio): | |
lang = "en" | |
model = engines[lang] | |
text = model.stt_file(audio)[0] | |
return text | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
def randomize_seed_fn(seed: int) -> int: | |
seed = random.randint(0, 999999) | |
return seed | |
system_instructions1 = """ | |
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.' | |
Keep conversation friendly, short, clear, and concise. | |
Avoid unnecessary introductions and answer the user's questions directly. | |
Respond in a normal, conversational manner while being friendly and helpful. | |
[USER] | |
""" | |
def models(text, seed=42): | |
seed = int(randomize_seed_fn(seed)) | |
generator = torch.Generator().manual_seed(seed) | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
generate_kwargs = dict( | |
max_new_tokens=300, | |
seed=seed | |
) | |
formatted_prompt = system_instructions1 + text + "[JARVIS]" | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
if not response.token.text == "</s>": | |
output += response.token.text | |
return output | |
async def respond(audio, model, seed): | |
user = transcribe(audio) | |
reply = models(user, model, seed) | |
communicate = edge_tts.Communicate(reply) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path | |
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center> | |
### <center>A personal Assistant of Tony Stark for YOU | |
### <center>Voice Chat with your personal Assistant</center> | |
""" | |
st.markdown(DESCRIPTION) | |
st.title("JARVIS") | |
uploaded_file = st.file_uploader("Upload audio file", type=["wav"]) | |
seed = st.slider("Seed", min_value=0, max_value=999999, value=0) | |
if uploaded_file is not None: | |
# Convert the uploaded file to a BytesIO object | |
audio_bytes = uploaded_file.read() | |
# Process the audio using the respond function | |
response_path = asyncio.run(respond(audio_bytes, models, seed)) | |
# Display the audio response | |
st.audio(response_path, format="audio/wav") | |
os.remove(response_path) |